

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Business & Social Studies

DEPARTMENT OF BUSINESS STUDIES

DIBPLOMA IN PROCUREMENT AND MATERIAL MANAGEMENT
DIPLOMA IN MANAGMENT

BAC 2202: MANAGEMENT ACCOUNTING

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST 2013

TIME: 2 HOURS

INSTRUCTIONS:

- This paper consists of **FIVE** questions.
- Answer question ONE (Compulsory) and any other TWO questions.

This paper consists of Four printed pages.

QUESTION 1 (Compulsory)

a) Briefly discuss FIVE differences between management accounting and Financial Accounting.

(10marks)

b) The following data relates to a particular stock item In a manufacturing firm

Normal usage	1250 units/day
Minimum usage	850 units /day
Maximum usage	1500 units/day
Lead time	30- 45 days
EOQ	150,000 unit/day

Required, calculate

i)	Re-order level	(2marks)
ii)	Minimum level	(2marks)
iii)	Maximu level	(2marks)

c) The top management of Mombasa County have thee following salary based on year of service.

Length of	Monthly salary	
Service (x) year	ksh 000s.	
1		60
2		62
3		64
4		68
5		70
6		72
7		78
8		80
9		84
10		88

Required

- i) Calculate the co-efficients in the linear cost function y = a+bx. (12marks)
- ii) Estimate the salary of a manager who has worked with the County for 20years. (2marks)

QUESTION 2

A Business firm has to select one project from two with different cashs inflows and outflows as given below.

	Project A.	
Year	Inflow(ksh)	Outflow (ksh)
0	0	1,500,000
1	950,000	300,000
2	1,200,000	450,000
3	1,500,000	550,000
4	1,100,000	000,000
5	1,050,000	650,000
6	800,000	850,000

PROJECT B

Year	Inflow (kshs)	Outflow (Kshs)
0	0	2,000,000
1	1,050,000	200,000
2	1,250,000	350,000
3	1,600,000	550,000
4	1,400,000	700,000
5	1,200,000	800,000
6	800,000	850,000

Required, calculate

- i) Yearly cash flows for each project. (4marks)
- ii) Pay back period for each project (4marks)
- iii) Net present value for each project at an interest rate of 12% p.a. (8marks)
- iv) Select project to be implemented using pay back period, give reasons for your answer. (2marks)
- v) Select project to be implemented using net present value method, give reasons for your answer.

(2marks)

QUESTION 3

- a) State FIVE principles of marginal costing. (5marks)
- **b)** Coca-cola Kenya limited process three major soft drinks in the local market for which the following statement has been produced.

Product	Fanta	Coke	Stone	Total
Sales Kshs	1,850,000	1,550,000	750,000	4,150,000
Total cost Kshs	900,000	800,000	1,050,000	2,750,000
Profit/less kshs	950,000	750,000	300,000	1,400,000

The total costs comprise ³/₄ variable and ¹/₄ fixed cost. Mr. Kajeshi, the managing director is considering dropping production of stoney soft drink because it is making losses. Based on the above data should stoney production be dropped? Support your answer. (15marks)

QUESTION 4

- a) State any FOUR characteristics of linear programming model. (4marks)
- **b)** Four jobs are to be allocated to four machines in accordance to the information given below which relates to the time each machine would take to complete each job.

Machine (Time in minutes)

		Α	В	C	D
Jobs	1	15	12	18	30
	2	16	30	14	25
	3	33	10	21	17
	4	21	14	13	26
	Regu	iired			

- i) Allocates the machines to the jobs that minimizes running time. (12marks)
- ii) Calculate the actual minimum time. (4marks)

QUESTION 5

a) Define the following terms with good examples in relation to network analysis.

i)	Critical path	(1mark)
ii)	Project crushing	(1mark)
iii)	Dummy resources	(1marks)
iv)	Network	(1marks)

b) A project has the following schedule .Time (weeks) COST

•	Normal	crash	Normal	crash
1-2	10	8	100	120
1-3	15	10	150	200
2-4	8	4	120	240
2-5	20	15	200	300
3-6	28	20	300	400
4-5	14	10	100	150
5-6	12	6	120	200
6-7	5	3	60	90

Required.

i)	Draw						a	netwo	rk		Ċ	liagram.	
	(3marks)												
ii)	Find the				critical					path			
	(3marks)												
iii)	Calculate normal		1	(cost	of	the	;		project			
ŕ	(1mark)												
iv)	Calculate normal			p	eriod	of	the	9		project			
ŕ	(1marks)				-								
v)	Crush tl	he	project	to	GET	the	minimum	completion	time	and	its	value.	
	(8marks)							-					