TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Business \& Social Studies
DEPARTMENT OF BUSINESS STUDIES

UNIVERSITY EXAMINATIONS FOR DEGREE IN
BACHELOR OF BUSINESS ADMINISTRATION

HBC 2111: MANAGEMENT MATHEMATICS II

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST 2013
TIME: 2 HOURS

INSTRUCTIONS:

- Answer Question ONE (Compulsory) and any other TWO questions.

This paper consists of Three printed pages

QUESTION 1 (Compulsory)

a) Explain the following of the following types of matrices.
(3marks)
i) Square matrix
ii) Symmetric matrix
iii) Singular matrix
ii) Given that $\mathrm{A}=$

Show that:

$$
\left(\begin{array}{ll}
2 & 2 \\
3 & 1
\end{array}\right)
$$

$\mathrm{B}=$
$\mathrm{C}=$ $\left(\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right)$
i) $\quad(A+B)^{T}=A^{T}+B^{T}$
ii) $\quad(A B)^{T}=B^{T} A^{T}$
iii) $\quad(\mathrm{ABC})^{\mathrm{T}}=\mathrm{C}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$
b)i) State the THREE characteristics (parts) of a linear programming model formulation. (3marks)
ii) A firm produces two products A and B with a contribution of sh16 and sh 20 per unit respectively. The production data (per unit) are as follows:
Products labour maternal x material y

		(units)	(units)
A	6	8	12
B	10	4	16

There are 1000 labour hours available are 700 units and 1600 units of materials X and Y respectively. Formulate a linear programming model and use the graphical method to determine the optimal solution.
(14marks)
c)Distinguish between definite and indefinite intergrals
(4marks)

QUESTION 2

a) Given the following matrices

Determine
I) A^{-1}
ii) BC
iii) $2 \mathrm{~A}-\mathrm{B}$
(6marks)
b) A factory is to install three types of machines A, B and C each of which requires supervisors, operators and output manager's Type A machine needs 3 supervisors 4 operators and 1 output manager. Type B needs 2 supervisors, 5 operators and 3 output managers. Type c needs 1 supervisor, 1 operators and 2 output managers.
The factory requires 23 supervisors, 40 operators and 31 output managers.
i)Formulate a system of simultaneous linear equations.
ii) Use the inverse matrix method, to determine how many machines of each type the factory require.
(11marks)

QUESTION 3

a) Determine the delivation of the following functions.
i) $Y=x e^{2 x}$
(5marks)
ii) $Y=3 x^{2} \cos 4 x$
(5marks)
b) I)Given that $x^{2}+y^{2}+6 x+7 y+3=0$ determine $d y_{/ d x}$ in terms of x and y

```
(4marks)
```

ii) If the total costs are given by $C(x)=360+10 x+0.2 x^{2}$ and the total revenue are given by $R(x)$ $=50 \mathrm{x}-0.2 \mathrm{x}^{2}$.
i) form the profit function.
(2marks)
ii) Determine the maximum profit point.

QUESTION 4

a) i) Determine $\int\left(5+1 / 4 x-2 x^{2}\right) d x$
(3marks)
ii)Evaluate $\int(t+1 / v t) d t$
(7marks)
b) The marginal profit of a firm is given as $M X=100-2 \mathrm{x}$, where x is the sales units. It is also established that the firm break even point is 5units, determine the fixed cost of the firm.

QUESTION 5

Evaluate the following integrals.
a) $\int_{0}^{2} t \sqrt{\left(2 x^{2}+1\right)} \mathbf{d t}$
(9marks)
b) $\int 2 x e^{3 x} d x$

