

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Business & Social Studies

DEPARTMENT OF BUSINESS STUDIES

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF BUSINESS ADMINISTRATION

HBC 2111: MANAGEMENT MATHEMATICS II

END OF SEMESTER EXAMINATIONS SERIES: AUGUST 2013 TIME: 2 HOURS

INSTRUCTIONS:

Answer Question ONE (Compulsory) and any other TWO questions.
This paper consists of Three printed pages

QUESTION 1 (Compulsory)

a) Explain the following of the following types of matrices.

(3marks)	
i) Square matrix	
ii) Symmetric matrix	
iii) Singular matrix	
ii) Given that A= $\begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix}$ B = $\begin{pmatrix} f & 1 \\ 3 & 4 \end{pmatrix}$ C = $\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$	
Show that:	
ⁱ⁾ $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$	
ⁱⁱ⁾ $(AB)^{T} = B^{T} A^{T}$	
$(ABC)^{T} = C^{T}B^{T}A^{T}$	(6marks)
b)i) State the THREE characteristics (parts) of a linear programming model formulat	ion. (3marks)
ii) A firm produces two products A and B with a contribution of sh16 and sh 20 per u	nit respectively.
The production data (per unit) are as follows:	- •

material y

		(units)	(units)	
Α	6	8	12	
В	10	4	16	
1	100011 1	111 700		, -

There are 1000 labour hours available are 700 units and 1600 units of materials X and Y respectively. Formulate a linear programming model and use the graphical method to determine the optimal solution. (14marks) (4marks) c)Distinguish between definite and indefinite intergrals

QUESTION 2

a)	Given the	e follo	owing m	atrices						
	A =	.1	-2	B =	1	-1	C =	1,	2	3 ~
		4	-1],		0 -1	2 3		0	1	2
					\sim).				

Determine

D)	A^{-1}				
m	DO				

- II) BC III) 2A-B
- (6marks) b) A factory is to install three types of machines A,B and C each of which requires supervisors, operators and output manager's Type A machine needs 3 supervisors 4 operators and 1 output manager. Type B needs 2 supervisors, 5 operators and 3 output managers. Type c needs 1 supervisor, 1 operators and 2 output managers.

The factory requires 23 supervisors, 40 operators and 31 output managers.

i)Formulate a system of simultaneous linear equations.

ii) Use the inverse matrix method, to determine how many machines of each type the factory require. (11marks)

OUESTION 3

b)

a) Determine the delivation of the following functions.

i) $Y = xe^{2x}$	(5marks)
ii) $Y = 3x^2 \cos 4x$	(5marks)
I)Given that $x^2 + y^2 + 6x + 7y + 3 = 0$ determine	
$dy_{/dx}$ in terms of x and y	(4marks)
ii) If the total costs are given by $C(x) = 360 + 10x + 0.2x^2$ and	the total revenue are given by $R(x)$
$=50x-0.2x^{2}$	
i) form the profit function.	
(2marks)	
ii) Determine the maximum profit point.	(4marks)
ESTION 4	

QU

a) i) Determine $\int (5+1/4x-2x^2) dx$

(3marks)

(3marks)

ii)Evaluate **b)** The marginal profit of a firm is given as MX=100-2x, where x is the sales units. It is also established that the firm break even point is 5units, determine the fixed cost of the firm.

QUESTION 5

Evaluate the following integrals.

 $\int (t+1/vt)dt$

a)
$$\int_{0}^{2} t \sqrt{(2x^{2}+1)} dt$$
 (9marks)

b) $\int 2xe^{3x}dx$

(11marks)

(7marks)

(10marks)