TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Engineering \& Technology
 DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2208: MECHANICS OF MACHINES I

END OF SEMESTER EXAMINATIONS
 YEAR 2 SEMESTER 2
 SERIES: DECEMBER 2013
 TIME: 2 HOURS

INSTRUCTIONS:

1. You should have the following for this examination:

- Answer Booklet
- Scientific calculator
- Drawing Instruments

2. This paper consists of FIVE Questions
3. Answer any THREE Questions.

This paper consists of FOUR printed pages

QUESTION 1

For the mechanism shown in Figure Q1 Link DE is constrained by guides to move vertically, being driven by crank $A B C$, with an angular velocity of $5 \mathrm{rad} / \mathrm{s}$ and an angular accelerating of $-35 \mathrm{rad} / \mathrm{s}^{2}$, and a sliding block at D . What is the acceleration of DE ?
(20marks)

QUESTION 2

a) A body of mass M on a plane at 20° to the horizontal and do which the coefficient of friction is μ, is
acted upon by a force applied upwards and parallel to the plane. When this force has a value of

60 N ,the body slides steadily downwards, when the value is 175 N , the body moves steadily upwards. Deduce from these results the values of M and μ.
(6marks)
b) A body of mass 50 kg on a plane inclined at 20° to the horizontal, the friction coefficient is 0.15 is to be moved by a force, P , directed at an angle of 15° to the plane, i.e. at 35° to the horizontal. Determine.
i) The value of P which will cause steady upward movement.
ii) The value to which P must be reduced before downward movement becomes possible.
(14marks)

QUESTION 3

a) Show that the ratio of belt tension for V-grooved pulley is given by:

$$
\frac{T_{1}}{T_{2}}=e^{\mu \theta \operatorname{Cosec} \beta}
$$

Where

- $\quad \mathrm{T}_{1}$ and T_{2} are belt tensions of the pulley system.
- $\boldsymbol{\theta}$-angle of lap
- $\quad \mu_{\text {- coefficient of friction }}$
- $\quad \beta$ - semi-angle of the groove
b) An electric motor transmits power by 3 V -belts, each of $320 \mathrm{~mm}^{2}$ cross-sectional areas, the total angle of groove being 45°. The density of the belt material is $1.65 \mathrm{Mg} / \mathrm{m}^{3}$ and the maximum allowable working stress in the belt is $2 \mathrm{MN} / \mathrm{m}^{2} . \mu=0.2$. The angle of lap on the motor pulley is 145°. If the speed of the motor pulley is $1400 \mathrm{rev} / \mathrm{min}$ calculate:-
i) The power which can be transmitted
ii) The corresponding diameter of the motor pulley.

(12marks)

QUESTION 4

a) A gear box with the input and output shafts in the same line is required to have a drive ratio of approximately 4 to 1 . The gears are to have a module of 3 and the intermediate shaft is to have its centre parallel to the input and output shafts but offset by 67.5 mm . If no gear is to have less than 15 teeth, suggest suitable teeth numbers.
(10marks)
b) An epicyclic train of the form shown in figure Q.4(b) has a fixed annulus with 80 teeth and a sun wheel with 40 teeth.
i) What will be the number of teeth required for a planet wheel.
ii) Determine the gear ratio the sun and the arm

QUESTION 5

a) An engine reciprocating mechanism of Figure Q5 has a crank shaft radius, r and a connecting rod of length, L. If the crank shaft is rotating at an angular speed w anti-clockwise show that the acceleration of the piston a_{p} is given by:

$$
a_{p}=w^{2} r\left(\cos \theta+\frac{r}{l} \cos 20\right)
$$

Where $\boldsymbol{\theta}$ is the angle that the crank makes with the horizontal?
(10marks)
b) An engine mechanism has a crank shaft radius of rotation of 120 mm and a connecting rod of 400 mm . If the crank rotates at $4 \mathrm{rev} / \mathrm{s}$, and make an angle of 30° with the inner dead centre position determine.
i) The velocity and accelerative of the piston
ii) The velocity and acceleration of the connecting rod.
(10marks)

