

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS 2013/2014 FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2311: DESIGN OF POWER TRANSMISSION SYSTEMS

Year III SEMESTER II SUPPLEMENTARY/SPECIAL EXAMINATIONS SERIES: FEBRUARY 2013 TIME: 2 HOURS

INSTRUCTIONS:

- This paper consists of FIVE questions
- Answer any THREE
- All questions carry equal marks

This paper consists of Three printed pages.

QUESTION 1

Fig. Q1 shows a compound gear train gears S1 and S2 being rigidly attached to the shaft Q. If shaft P rotates at 1000 revs/min, whilst the annulus A_2 is driven in the opposite direction at 500 revs/min, determine the speed and direction of rotation of shaft Q.

The numbers of teeth in the wheels are $S_1 = 24$, $S_2 = 40$ $A_1 = 100$, $A_2 = 120$ (20 marks)

QUESTION 2

- a) Illustrate with neat sketches how the following keys are used, and state where each is used:
 - i) Parallel sunk key
 - ii) Cib head key
 - iii) Saddle key
 - iv) Tangent key

(8 marks)

b) Design a split muff coupling to be used to transmit 20KW at 250kW revs/min. permissible shear and curbing stresses for shaft and key materials are 60 and 120 N/mm² respectively. The split muff is to be made of cast iron with permissible shear stress of 18N/M². Assume the maximum torque to be transmitted is to be 30 per cent greater than the mean turque. (12 marks)

QUESTION 3

- a) List FOUR advantages of helical springs.
- **b)** Use neat sketches to illustrate the following types of springs and state where each is used:
 - i) Tension helical
 - ii) Torsion
 - iii) Lammated
 - iv) Bellevile
- c) Design a helical compression spring for minimum load of 1200N and a deflection of 30mm using the value of spring index of 5. The maximum permissible shear stress for spring wire is 420 Mpa and Modulus of rigidly is 84Kn/mm².

Take Wahl factor, $K = \frac{4C-1}{4C-4} + \frac{0.615}{C}$

Where C = Spring index

QUESTION 4

a) Two machine parts were fastened together rightly by means of a 27mm tap bolt. If the load tending to separate this part is neglected, find the stress that is set up in the bolt by the initial tightening.

(10 marks)

b) A glass cylinder has a pitch circle diameter of 420mm and the maximum gas press acting on the cylinder is 2.5N/mm². If such of nominal diameter 24mm are to be used, calculate the number of slids required to fix the cylinder cover. (10 marks)

(4 marks)

(8 marks)

(8 marks)

QUESTION 5

- a) Illustrate with sketch the profile of a square thread and show the following elements: (8 marks)
 - i) Pitch
 - ii) Depth
 - iii) Width
 - iv) Minimum diameter
 - v) Pitch circle diameter
- b) A square thread screw having a mean diameter of 40mm and 160 threads meter is used to raise a load of 7.5KN. The nut which rotates has a bearing surface of mean diameter 56mm. Find the effort required at the end of the lever 300mm effective length to raise a load when the coefficient of friction, (ai) is 0.08 (12 marks)