

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & IT

UNIVERSITY EXAMINATIONS 2012/2013 FOR THE DEGREE OF BACHELOR SCIENCE IN INFORMATION TECHNOLOGY (BSIT/MAY 2011, BSIT/MAY 2012)

ICS 2205: DIGITAL LOGIC

SUPPLEMENTARY/SPECIAL EXAMINATIONS **SERIES:** FEBRUARY 2013 **TIME: 2 HOURS**

INSTRUCTIONS:

- This paper consists of **FIVE** guestions
- Answer questions **ONE** and any other **TWO** questions.

This paper consists of Four printed pages.

QUESTION 1

a)	Highlight the characteristics of the octal number system.	(4 marks)
u)	inginight the characteristics of the octar number system.	(T mai Ko

- b) Perform the following conversions.
 - i) 25.6251_0 to binary
 - ii) 103_{10} to Hexadecimal
 - iii) $1FB_{16}$ to octal

Page 1

(6 marks)

© 2013 – Technical University of Mombasa

c)	For the logic circuit shown in figure 1.0, obtain the expression for the output z and draw a truth table
	for the gate.

d)	With the aid of a logic diagram and truth table, explain the operation of a clocked Rs flip	tlop. (6 marks)
e)	Perform the following operations. i) $100F.01_{16} - 275.32_{16}$ convert your answer to decimal ii) $174_{18} - 1001100111_2$ convert your answer to hexadecimal iii) $OCF_{16} + 235_{10}$	(6 marks)
f)	Differentiate between Asynchrous and synchronous sequential logic circuits.	(3 marks)
QU	UESTION 2	
a)	Draw an electronic realization of an AND gatt and explain how it operates.	(4 marks)
b)	Perform the following operations:	
ļ	i) 10010_2 AND $(01101_2$ OR $11001_2)$ ii) 1101_2 XOR 01101_2 . Determine the compliment of the result iii) $010110_2 - 110010_2$ using the 2's compliment	
c)	Perform the following arithmetic operations. i) $10101.11_2 \times 1001_2$ ii) $111100_2 \div 1010_2$ Convert your answer to hexadecimal iii) $421_8 + 37A_{16}$ Convert your answer to decimal	(6 marks)
d)	Describe the NAND gate as a complimentary gats and draw its truth table.	(4 marks)

1 5

QUESTION 3

- a) Simplify the expressions using Boolean Algebra.
 - i) $A\overline{B}C\{BD+CDE\}+A\overline{C}$
 - ii) $\overline{A}\overline{B}C + B\overline{C} + \overline{A}BC + ABC$
- **b)** Draw a logic circuit which will generate the function $F = B\overline{C}A + \overline{C}) + \overline{A}.\overline{B}$ using only NOR gates. (5 marks)
- c) From the truth table below, determine the expression for the output x and draw the implementation of a simplified expression of x

А	В	С	С	Х
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	1

d) The gate network in figure 2.0 has 3 inputs A, B and C. Find the expression for the output z and simplify this expression.

QUESTION 4

a)	With the aid of a logic diagram explain the operation of a full adder.	(6 marks)
b)	Impliment the expression $y = ABC + AB + BC$ using an AND gate and an OR gate.	(4 marks)
c)	Explain the operation of an edge triggered flip flop.	(5 marks)
d)	Design a combinational logic circuit for binary to gray code conversion.	(5 marks)

QUESTION 5

(3 marks)

a) Obtain simplified logic expressions for the following k-maps and implement the expression

- b) Minimize the following expressions using k-maps (6 marks)
 i) D = ABC + ABC
 ii) X = AB{B + A(B + C)} + BC
 c) Prove the following laws of Boolen Algebra (4 marks)
 i) A + AB = A + B
 ii) A + BC = (A + B)CA + C)
- d) Highlight the characteristics of the excess 3 number systems. (3 marks)