TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering \& Technology
DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2401: INDUSTRIAL HYDRAULICS

SUPPLEMENTARY/SPECIAL EXAMINATIONS
 SERIES: MARCH 2014
 TIME: 2 HOURS

INSTRUCTIONS:

- You should have the following for this examination:
i) Drawing instruments
ii) Electronic calculator
- This paper consists of FIVE questions.
- Answer Question ONE (Compulsory) and any other TWO questions.

This paper consists of Three printed pages

QUESTION 1 (Compulsory)

a) Illustrate the operation of the following types of cylinders as used in hydraulic systems:
i) Double rod cylinder
ii) Single acting cylinder with spring

With the aid of a sketch, explain the construction of a Tie-Rod cylinder. (10 marks)
b) i) differentiate a Relief valve from a sequence valve in pressure control valve.
ii) Outline the FOUR variables upon which the flow of hydraulic fluid depends on in a Throttle valve. (10 mark)

QUESTION 2

a) i) Outline any FOUR desirable properties of a hydraulic fluid.
ii) Explain the cause of sludge in a hydraulic fluid and its effects on a hydraulic system. (11 marks)
b) I) List FOUR factors considered when selecting a hydraulic pump for a particular application.
II) With the aid of sketches explain the construction and operation of following hydraulic pumps.
i) Internal gear pump
ii) Balanced vane pump. (9 marks)

QUESTION 3

a) Define the following terms in connection with the flow of a liquid:
i) Uniform flow (2 marks)
ii) Steady flow (2 marks)
iii) Unsteady flow (2 marks)
iv) Mean velocity (2 marks)
v) Discharge (2 marks)
vi) Mass flow rate (2 marks)
b) A hydraulic hose with internal diameter of 0.025 is carrying oil with kinematic viscosity
$5.0 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ at a flow rate of $0.00126^{3} / \mathrm{s}$. calculate the Reynolds number and determine if the flow is laminar or turbulent. (5 marks)
c) $10 \mathrm{~m} 3 / \mathrm{h}$ of water flows through a pipe of 100 mm inside diameter. The pipe is later reduced to an inside dimension of 80 mm . calculate the flow velocity in each section of the pipe. (3 marks)
i) Turning a short taper using a formed tool
ii) Compound slide technique.
(7 marks)

QUESTION 4

a) i) State the Pascal's law as applied to hydraulics.
ii) Explain FOUR functions of a hydraulic fluid in a hydraulic system. (5 marks)
b) I) Name TWO types of Hydraulic pump in each of the following categories:
i) Non positive displacement
ii) Positive displacement
II) With the aid of a sketch, explain the operation of a lobe pump. (7 marks)
c) A pipeline connecting two reservoirs having a difference of level of 6 m is 720 m long, and rises to a height of 3 m above the upper reservoir at a distance of 240 m from the entrance before falling to the lower reservoir. If the pipe is 1.2 m in diameter and the frictional coefficient and the pressure at the highest point of the pipeline? (8 marks)

QUESTION 5

a) i) Explain what is meant by 'safe edge' on a file and why it is necessary.
ii) Explain briefly the correct use of files.
(10 marks)
b) i) With the aid of a sketch show the parts of a hacksaw.
ii) State the type of blades available for hacksaws.
iii) Explain how blades are fitted on frame.

