

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2206: THERMODYNAMICS I

SUPPLEMENTARY/SPECIAL EXAMINATIONS SERIES: MARCH 2014 TIME: 2 HOURS

INSTRUCTIONS:

- You should have the following for this examination:
 - i) Scientific calculator
 - ii) Answer booklet
 - iii) Thermodynamics table
- This paper consists of **FIVE** questions.
- Answer any **THREE** questions.

This paper consists of Three printed pages

QUESTION 1 (Compulsory)

a)	Define the following thermodynamics properties:	
	i) Intensive property	
	ii) Extensive property	(4 marks)
b)	Explain the following terms giving an example for each:	
	ii) Heat source	(3 marks)
c)	Derive the heat efficiency of a heat engine.	(5 marks)

d) A heat engine working on a carrot cycle converts a quarter (¼) of the heat input into work when the sink temperature is reduced by 80°C, the heat engine efficiency gets doubled. Calculate the temperature of the source and the sink. (8 marks)

QUESTION 2

a) State the properties of steam which makes it a preferred working fluid.	(3 marks)
 b) Explain the following terms: i) Wet steam ii) Dru saturated steam 	
iii) Superheated steam	(3 marks)
c) Define dryness fraction of steam.	(2 marks)
d) Stat the advantages of superheated steam.	

e) Calculate the quantity of heat required to produce 1kg of steam at a pressure of 6 bar at a temperature of 25°C, under the following conditions (steam table at 6 bar $G_f = 670.4kJ/Kg$.

 $G_{fg} = 2085 kJ / Kg$ $t = 158.8^{\circ} C$)

- i) When the steam is wet having dryness fraction of 0.9
- ii) When the steam is dry saturated
- iii) When it is superheated at a constant temperature of 2500C assuming the mean specific heat of superheated steam to be 2.3kJ/Kgk.
 (8 marks)

QUESTION 3

a) State Charles Law and Boyles law.	(4 marks)
b) Explain the following terms:i) Mole fractionii) Volume fraction	
iii) Mass fraction	(3 marks)
c) Show that $Q - Cv = R$	(5 marks)

d) 0.1m^3 of gas is at a pressure of 260kN/m^2 and 180°C . During a constant pressure process, its temperature decreases to 20°C . Calculate heat transfer from the gas and work done on the gas during the process. Take R = 0.29kJ / Kgk. Q = 1.00kJ / Kgk

QUESTION 4

- a) Define the concept of heat pump and derive the co-efficient of performance (CO). (4 marks)
- b) State second laws of thermodynamics according to Kelvin-plancs statement. (4 marks)

(8 marks)

c)	Define perpetual motion machine.	(3 marks)		
d)	Derive thermal efficiency of a heat engine.	(5 marks)		
e)	A heat engine in a cycle delivering work equal to 26 x 103 and absorbs heat of 92kJ. De engine and heat transfer from the working fluid.	termine the (4 marks)		
QUESTION 5				
a)	Explain the following:i) Heatii) Internal energy			
j	iii) Enthalpy	(6 marks)		
b)	Derive the steady flow equation and state the assumptions.	(8 marks)		
c)	In an air compressor air flows steady at rates of 0.5kg/s through an air compressor. It ent	ters at 6m/s		

c) In an air compressor air flows steady at rates of 0.5kg/s through an air compressor. It enters at 6m/s with a pressure of 1 bar and a specific volume 0.85m³/kgs and leaves at 5m/s with a pressure of 7 bars and specific volume of 0.16m³/kg.

Calculate the inlet and outlet pipe cross sectioned area. (6 marks)