

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (ANALYTICAL OPTION)

BTAC 12S

ACH 4210: COMPARATIVE STUDY OF SAND PBLOCK ELEMENTS

SEMESTER EXAMINATION

DECEMBER 2013 SERIES

2 HOURS

Instructions to candidates:

This paper consist of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

- a) (i) Using balanced chemical equations, explain how the Group I elements react with oxygen, giving only the major products. (6marks)
 - (ii) Give reasons for the preferred products in (i) above (2marks)
- b) (i) Give the structure of diborane and explain the concept of three-centre twoelectron bonds in the bridges. (5marks)
 - (ii) Outline TWO synthetic applications of diborane, using chemical equations as appropriate. (4marks)
- c) Explain why MgSO₄ is readily soluble in water while BaSO₄ is virtually insoluble

(7marks)

d) (i) Define the term "catenation"

(1mark)

(ii) Explain why in Group IV, carbon (first row element) has a stronger tendency to catenation than its homologues, while in group VI, sulphur (second row element) has a stronger tendency to catenation relative to the other group members.

(5marks)

(6marks)

QUESTION TWO

a) (i) Write the chemical equations for the reaction between the following oxides and water, and name the products:

Na₂O, P₄O₁₀, SO₃, Cl₂O₇

- (ii) Comment on the nature of the above oxides in view of their reactions with water. (2marks)
- b) (i) Explain the trend of acid strength of aqueous hydrogen halides. (4marks)
 - (ii) Give FOUR factors to which differences between the chemistry of fluorine and the other halogens can be attributed. (4marks)
 - (iii) State any FOUR applications of the Group II elements and their compounds. (4marks)

QUESTION THREE

- a) (i) Explain the trend of basicity of the oxides of group III elements (8marks)
 - (ii) Give THREE applications of aluminium or its compounds, explaining the property exploited in each case. (6marks)
- b) Boiling points of the halogens and hydrogen halides are given in the following table

Element, X		F	Cl	Br	I
Boiling	X	-188	-34	59	183
	HX	+20	-85	-67	-35
Point (°C)					

Explain the trend of:

(i) The boiling point of the halogens

(2marks)

(ii) The boiling point of the hydrogen halides

(4marks)

QUESTION FOUR

- a) Elemental oxygen occurs in two allotropic forms: oxygen molecule and ozone.
 - (i) Write the Lewis structures of the two allotropes. (4marks)
 - (ii) Explain the order of reactivity of the allotropes. (3marks)
 - (iii) State THREE common applications of oxygen and ONE application of ozone.

(4marks)

b) Explain the variation in the boiling points of the group VI hydrides in the following table

Hydride	H ₂ O	H ₂ S	H ₂ Se	H ₂ Te
Boiling point (°C)	100	-61	-42	-2

(5marks)

c) Thallium (group III) forms both T_iCl₃ and T_iCl, the latter being more stable than the former. Explain. (4marks)

QUESTION FIVE

- a) Explain the following observations
 - (i) LiCl is only sparingly soluble in water, but very soluble in methanol. (3marks)
 - (ii) The O-O and O-F bonds are much weaker than S –S and S-F bonds, while O-H and O-C bonds are much stronger than S-H and S-C bonds. (5marks)
 - (iii) The solubility products of the carbonates of group II elements decrease, while those of fluorides increase as the group is descended. (7marks)
- b) Explain the trends in crystallographic and hydrated radii of the alkali metal ions in the following table.

Metal ion	Li ⁺	Na ⁺	K^{+}	Rb^+	Cs^+
Crystal radius (A°)	0.85	1.10	1.40	1.55	1.82
Hydrated radius (A°)	3.40	2.75	2.30	2.25	2.21

(5marks)