

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (ANALYTICAL OPTION) BTAC 12S / BTAC 13S₂

ACH 4208: PHYSICAL CHEMISTRY II

SEMESTER EXAMINATION

DECEMBER 2013 SERIES

2 HOURS

(2 marks each, 6 total)

Instructions to candidates:

This paper consist of FIVE questions Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

- a) Calculate the standard heat of formation of propane (C_3H_8) if its heat of combustion is -2220.2KJ/mol. The heats of formation of $CO_2(g)$ and $H_2O(l)$ are -393.5 and -285.8KJ/Mol respectively. (6marks)
- b) Differentiate between:
 - (i) Fugacity and activity
 - (ii) Phase and phase rule equation
 - (iii) Component and degree of freedom.
- c) Draw and explain the phase diagram of one component three phase system. (6marks)
- d) Calculate the entropy change when one mole of ethanol (C_2H_5OH) is evaporated at 351K. The molar heat of vapourisation of ethanol is 39.84KJ/mol. (4marks)
- e) The heat of combustion of carbon monoxide at constant volume and at 17° C is 283.3KJ/mol. Calculate its heat of combustion at constant pressure. (R = 8.314 JK⁻¹mol⁻¹) (6marks)

f) State and give the mathematical description of the second law of the second law of thermodynamics. (2marks)

QUESTION TWO

- a) Describe open, closed and isolated systems.
- b) Using suitable examples, describe what you understand by the terms:
 - (i) Extensive properties
 - (ii) Intensive properties
 - (iii) State function
 - (iv) Path functions

(8marks)

(3marks)

- c) Calculate the reversible work of expansion of one mole of an ideal gas at 25°C under isothermal conditions, the pressure being changed from 1 to 5 atmosphere. ($R = 8.314 J K^{-1} mol^{-1}$) (4marks)
- d) Urea hydrolyses in the presence of water to produce ammonia and carbon dioxide.

 $CO (NH_2)_{2 (aq)} + H_2O_{(l)} \rightarrow CO_{2 (g)} + 2NH_{3(g)}$

What is the standard entropy change for this reaction when 1 mole of urea reacts with water? The standard entropy data for the reactants and products is shown below:

Substance	S° (cal/mol K)
CO(NH ₂) ₂	41.55
H ₂ O(l)	16.72
$CO_2(g)$	51.06
NH ₃ (g)	46.01

(5marks)

QUESTION THREE

- a) The thermodynamic quantity enthalpy H, is given as:
 - H = U + PV

©2013 Technical University of Mombasa

(i) Describe U, P and V

(ii) By considering infinitesimal increments to H,U, and V, show that at constant p:

 $\Delta H = dq_p \qquad (7marks)$

- b) Calculate the change in free energy for the isothermal reversible of one mole of an ideal gas from 2.0 atm to 0.2 atm at 25° C. (R = 8.314JK⁻¹mol⁻¹) (4marks)
- c) Calculate the heat of formation of benzene at 25°C, if the heats of combustion of benzene, carbon and hydrogen are -780.98, 94.05 and -68.32Kcal/mol respectively at 25°C.
 (6marks)

QUESTION FOUR

- a) Define or explain the following terms:
 - (i) Thermo chemistry
 - (ii) Thermo chemical equation
 - (iii) Entropy
 - (iv) Free energy

(4marks)

b) Calculate enthalpy of formation of ethane from the following data:

 $C (g) + O_2(g) \longrightarrow CO_2(g) \qquad \Delta H = 393.4 \text{KJ}$ $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O \qquad \Delta H = -284.61 \text{KJ}$ $C_2H_6(g) + \frac{7}{2}O_2(g) \longrightarrow 2CO_2(g) + \frac{3}{2}H_2O (l) \qquad \Delta H = -1561.0 \text{KJ}$

(6marks)

c) By the use of a suitable model, show that isothermal reversible expansion work is given as:

$$w = -nRT \ In \frac{Vf}{Vi}$$
(10marks)

QUESTION FIVE

a) The reaction of iron with dilute HCl can be describe as: $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$

Fe(s) + 2HCl(aq) \rightarrow FeCl₂(s) + H₂(g)

Calculate the work done when 50g of iron reacts with HCl in :

(i)	A closed vessel of fixed volume	(2marks)
(ii)	An open beaker at 25° C (Fe = 56g/mol)	(3marks)

b) The heat of the reaction below is -22.1KCal

 $\frac{1}{2}$ H₂ (g) + $\frac{1}{2}$ Cl₂(g) \rightarrow HCl (g)

Calculate the heat of reaction at 77°C given the following data

Substance	$C.p.m$ ($Calmol^{-1}K^{-1}$)
H ₂	6.82
Cl ₂	7.70
HCl	6.80

(5marks)

c) Four moles of an ideal gas expand isothermally and reversibly from 1 litre to 10 litres at 300K. Calculate the change in free energy of the gas. ($R = 8.314 \text{ SK}^{-1} \text{mol}^{-1}$)

(4marks)

- d) Using suitable examples, define or explain each of the following terms:
 - (i) Spontaneity
 - (ii) Gibbs- Helmholtz equation
 - (iii) Equation of state

(6marks)