
 Technical University of Mombasa Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES
 UNIVERSITY EXAMINATION FOR THEDEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (ANALYTICAL OPTION) BTAC12S /BTAC13S2

ACH 4208: PHYSICALCHEMISTRYII

SEMESTER EXAMINATION

DECEMBER 2013 SERIES
2HOURS
Instructions to candidates:
This paper consist of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

a) Calculate the standard heat of formation of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ if its heat of combustion is $2220.2 \mathrm{KJ} / \mathrm{mol}$. The heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -393.5 and $285.8 \mathrm{KJ} / \mathrm{Mol}$ respectively.
(6marks)
b) Differentiate between:
(i) Fugacity and activity
(ii) Phase and phase rule equation
(iii) Component and degree of freedom. (2 marks each, 6 total)
c) Draw and explain the phase diagram of one component three phase system. (6marks)
d) Calculate the entropy change when one mole of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is evaporated at 351 K . The molar heat of vapourisation of ethanol is $39.84 \mathrm{KJ} / \mathrm{mol}$.
(4marks)
e) The heat of combustion of carbon monoxide at constant volume and at $17^{\circ} \mathrm{C}$ is $283.3 \mathrm{KJ} / \mathrm{mol}$. Calculate its heat of combustion at constant pressure. ($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(6marks)
f) State and give the mathematical description of the second law of the second law of thermodynamics.

QUESTION TWO

a) Describe open, closed and isolated systems.
(3marks)
b) Using suitable examples, describe what you understand by the terms:
(i) Extensive properties
(ii) Intensive properties
(iii) State function
(iv) Path functions

(8marks)

c) Calculate the reversible work of expansion of one mole of an ideal gas at $25^{\circ} \mathrm{C}$ under isothermal conditions, the pressure being changed from 1 to 5 atmosphere. ($\mathrm{R}=$ $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(4marks)
d) Urea hydrolyses in the presence of water to produce ammonia and carbon dioxide.
$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{NH}_{3(\mathrm{~g})}$
What is the standard entropy change for this reaction when 1 mole of urea reacts with water? The standard entropy data for the reactants and products is shown below:

Substance

$$
S^{\circ}(\mathrm{cal} / \mathrm{mol} K)
$$

$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
41.55
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
16.72
$\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{NH}_{3}(\mathrm{~g})$
46.01

(5marks)

QUESTION THREE

a) The thermodynamic quantity enthalpy H , is given as:

```
H = U + PV
```

(i) Describe U, P and V
(ii) By considering infinitesimal increments to H, U, and V , show that at constant p :

$$
\Delta \mathrm{H}=\mathrm{dq}_{\mathrm{p}}
$$

b) Calculate the change in free energy for the isothermal reversible of one mole of an ideal gas from 2.0 atm to 0.2 atm at $25^{\circ} \mathrm{C}$. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
(4marks)
c) Calculate the heat of formation of benzene at $25^{\circ} \mathrm{C}$, if the heats of combustion of benzene, carbon and hydrogen are $-780.98,94.05$ and $-68.32 \mathrm{Kcal} / \mathrm{mol}$ respectively at $25^{\circ} \mathrm{C}$.
(6marks)

QUESTION FOUR

a) Define or explain the following terms:
(i) Thermo chemistry
(ii) Thermo chemical equation
(iii) Entropy
(iv) Free energy
(4marks)
b) Calculate enthalpy of formation of ethane from the following data:
$\mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=393.4 \mathrm{KJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}=-284.61 \mathrm{KJ}$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-1561.0 \mathrm{KJ}$
(6marks)
c) By the use of a suitable model, show that isothermal reversible expansion work is given as:
$w=-n R T \operatorname{In} \frac{V f}{V i}$
(10marks)

QUESTION FIVE

a) The reaction of iron with dilute HCl can be describe as: $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})$
Calculate the work done when 50 g of iron reacts with HCl in :
(i) A closed vessel of fixed volume
(2marks)
(ii) An open beaker at $25^{\circ} \mathrm{C}(\mathrm{Fe}=56 \mathrm{~g} / \mathrm{mol})$
(3marks)
b) The heat of the reaction below is -22.1 KCal
$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$

Calculate the heat of reaction at $77^{\circ} \mathrm{C}$ given the following data

Substance
C.p.m $\left(\right.$ Calmol $\left.^{-1} K^{-1}\right)$
H_{2}
6.82
Cl_{2}
7.70

HCl
6.80
(5marks)
c) Four moles of an ideal gas expand isothermally and reversibly from 1 litre to 10 litres at 300 K . Calculate the change in free energy of the gas. $\left(\mathrm{R}=8.314 \mathrm{SK}^{-1} \mathrm{~mol}^{-1}\right)$
(4marks)
d) Using suitable examples, define or explain each of the following terms:
(i) Spontaneity
(ii) Gibbs- Helmholtz equation
(iii) Equation of state
(6marks)

