

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (ANALYTICAL OPTION) BTAC Y2S2

ACH 4206 : CHEMICAL PROCESSES

SEMESTER EXAMINATION

DECEMBER 2013 SERIES

Instructions to candidates:

This paper consists of **FIVE** guestions Answer guestion **ONE** (compulsory) and any other **TWO** guestions

QUESTION ONE

- a) Explain the following terms
 - (i) Theoretical oxygen
 - (ii) Accumulation
 - (iii) Purge stream
 - (iv) Orsat analysis
- b) List Two guidelines for mass and energy balances
- c) When 5.00g of NaOH are added to 100g of water using a calorimeter (with Cp=493.24J/K), the temperature rises from 25.0 to 37°C. Calculate the molar heat of solution.

NaOH(s) \longrightarrow Na⁺(aq) + OH⁻(aq)

Assume that the specific heat capacity of water is 4.18J/gK; and that of the NaOH(aq)

(8marks)

(2marks)

2 HOURS

solution is the same.

(5marks)

d) Covert the following into the unit given in brackets.

a) 1.5kg/sec(g/hr)	(2marks)
b) $4.3 \times 10^2 \text{m}^2/\text{g} (\text{nm}^2/\text{kg})$	(2marks)

e) An aqueous solution of NaCl is prepared by dissolving 25kg NaCl in 100kg H_2O . Calculate the composition of solution by mole%. (Na = 23, Cl = 35.5, H = 1, O = 16)

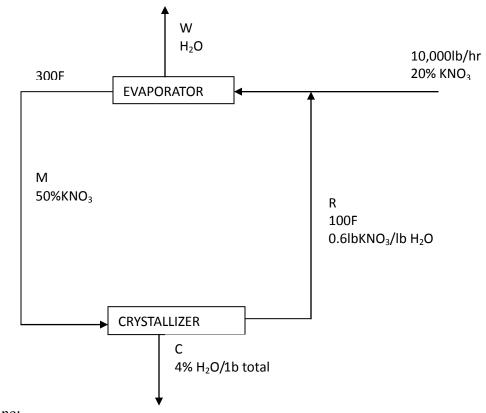
> (4marks) (3marks)

- f) List THREE energy loss components in chemical plants.
- g) 100moles/hr of C_4H_{10} and 5000moles/hr of air are fed into a combustion reactor. Calculate the percent of excess air. (4marks)

QUESTION TWO

a) When ethane (C_2H_6) is burned with atmospheric air, the volumetric analysis of the dry products of combustion yields the following: 10% CO₂, 1% CO, 3% O₂ and 86% N₂. Assume air is composed of 21% oxygen and 79% nitrogen by volume.

(i)	Sketch a well labelled diagram for the process	(3marks)
(ii)	Develop the combustion equation for 1 mole of ethane	(5marks)
(iii)	Determine the percentage of excess air	(4marks)


- b) During an air pollution monitoring study, the inlet gas stream to a bag filter is 1,690,920m³/hr and the dust loading is 4577 mg/m³. The outlet gas stream from the bag filter is 185,040m³/hr and the dust loading is 57mg/m³.
 - (i) Draw a well labelled flow diagram for the system. (2marks)
 - (ii) Calculate the maximum quantity of ash that will have to be removed from the bag filter hopper in Kg/hr. (6marks)

QUESTION THREE

a) The bond energy (KJ) for H_2,F_2 and HF are 436, 158 and 568KJ respectively. Considering the reaction: $H_2(g) + F_2(g) \rightarrow 2HF$

(i)	Calculate the enthalpy (energy) of the reaction	(3marks)
(ii)	Draw an energy level diagram for the reaction.	(4marks)

b) Given the process shown below;

Determine;

(i) Production rate of KNO_3 in Kg/hr. (1kg = 2.21b)	(3marks)
(ii) Recycle ratio	(2marks)

c) A stack gas contains 60mole % N_2 , 15% CO_2 , 10% O_2 and the balance H_2O . Calculate the molar composition of the gas on a dry basis. (4marks)

QUESTION FOUR

- a) Explain the term Humidification. (2marks)
- b) Determine the air-fuel for the complete combustion of n-butane (C_4H_{10}) with.

(i)	Theoretical air,	(4marks)
(ii)	50% excess air.	(4marks)

c) Pineapples contain about 15wt% solids and 85wt% water. To make pineapple Jam, crushed pineapples and sugar are mixed in 55:45 mass ratio and the mixture is heated to evaporate water until the residue contained one-third water by mass.

(i)	Draw a well labelled flow diagram for the system	(4marks)
(ii)	Calculate the amount of pineapple jam in kg.	(4marks)
(iii)	Calculate the amount of pineapples needed to make a kg of jam.	(2marks)

QUESTION FIVE

a) An autoclave contains 1000cans of pea soup. It is heated to an overall temperature of 100°C. The specific heats of the pea soup and the can metal are respectively 4.1kJ/kg °C and 0.50kJ/kg °C. The weight of each can is 60g and it contains 0.45kg of pea soup. The cans are to be cooled to 40°C before leaving the autoclave. (Assume that the heat content of the autoclave walls above 40°C is 1.6×10^4 kJ and that there is no heat loss through the walls. Let w = weight of cooling water required ; and the datum temperature be 40°C , the temperature of the cans leaving the autoclave. Cooling water enters at 15°C and leaves at 35°C). Determine the;

(i)	Heat entering the autoclave	(5marks)
(ii)	Heat leaving the autoclave	(3marks)
(iii)	Amount of cooling water required	(2marks)

- b) A part mixture containing 25% of a pigment and the balance water sells for Ksh 18/kg and a mixture containing 12% pigment for Ksh 10/kg. A paint retailer produces a blend containing 17% pigment.
 - (i) Draw a well labelled diagram for the process (3marks)
 (ii) Calculate the price, in Ksh, the product should be sold to yield a 10% profit.

(7marks)