

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY BTAC 11M / BTAC 12M EVE

ACH 4313: SURFACE & COLLOID CHEMISTRY

SEMESTER EXAMINATION

DECEMBER 2013 SERIES

2 HOURS

Instructions to candidates:

This paper consist of FIVE questions Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

- (a) (i) Differentiate between "physical adsorption" and "chemisorption". (2 marks)
 - (ii) Explain the difference in the volumes of chlorine and oxygen physically adsorbed by 1gm of charcoal at 25°C and 1 atm pressure, given in the following table.

Gas	Volume adsorbed (cm ³)
Cl ₂	238
O ₂	8.5

(4 marks)

b) The Gibbs adsorption equation for a dilute solution is expressed as:

$$S = -\frac{C}{RT} \cdot \frac{d\delta}{dc}.$$

	(i)	Explain the meaning of the terms in the expression.	(4 marks)	
	(ii)	For a 0.05M solution of phenol in water at 20°C, the rate tension varies with concentration, $-d\delta/dc$, is 165 erg. cm ⁻² mo	at which the surface $l^{-1}L$.	
		Determine the amount of phenol adsorbed at the surface moles/cm ² .	e of the solution in	
		$[R = 8.314 \text{ x } 10^7 \text{ ergs.deg}^{-1} \text{ mole}^{-1}]$	(4 marks)	
c)	(i)	Explain the difference between a " true solution" and a " colloidal dispersion (2 marks)		
	(ii)	Briefly describe the operation of the following methods for the colloidal dispersions,	ne purification of	
		I. Electrodialysis	(3 marks)	
		II. Ultrafiltration	(3 marks)	
d)	Expl	ain how a negatively charged silver iodide soli is formed	(4 marks)	
e)	(i)	State the TWO types of emulsions	(1 mark)	
	(ii)	Describe a simple method which can be used to distinguish the	ne TWO types of	
		emulsions	(3 marks)	

QUESTION TWO

a)	(i)	State the basic principle of a chromatographic analysis.	(1 mark)
	(ii)	Briefly explain how a chromatographic separation of a mixture of solution can be accomplished.	f compounds in (5marks)
b)	(i)	Define the term "monomolecular" film	(1 mark)
	(ii)	Explain the formation of a monolayer of a long-chain fatty acid sar surface of water, using a sketch for demonstration.	nple on the (5 marks)
	(iii)	A film containing 5.14×10^{-5} g of hexadecyl alcohol spread compressed into a monomolecular layer accupying on area of Calculate the cross-sectional area of one molecule.	on water was 15.0 x 17.9cm.
		{Avogadro constant (N _A) = 6.02×10^{23} }	(8 marks)

QUESTION THREE

- a) (i) Explain the difference between "lyophilic" and "lyophobic" sols, giving TWO examples of each type. (4 marks)
 - (ii) State TWO factors which determine the stability of lyophilic sols. (2 marks)
 - (iii) Explain the meaning and cause of the term "salting out" as applied to lyophilic sols (3 marks)
 - (iv) Briefly explain how the effect in (iii) above can be solved. (3 marks)
- b) (i) Define the term "peptization". (1 mark)
 - (ii) Briefly explain how water peptizes a starch (hydrophilic) sol. (3 marks)
- c) Explain why most solutes are generally more easily adsorbed from aqueous than from ethanolic solution. (4 marks)

QUESTION FOUR

a) The adsorption of carbon monoxide on mica at 90° K gave the following results

Pressure, mmHg	105	453	545	791	1059
Volume adsorbed (cm ³)	1300	1630	1680	1780	1830

Show that the data fit the Langmuir adsorption isotherm. $\left[pV^{-1} = (k_1)^{-1} + k_2(k_1)^{-1} \cdot p\right]$ (9 marks)

- b) (i) Explain the difference between" intrinsic" and "extrinsic" colloids, giving ONE example of each type. (3 marks)
 - (ii) Explain the basic principle of the "condensation methods" for the preparation of colloidal dispersions. (2 marks)
- c) Using a sketch, explain the formation of micelles by detergent solutions. (6 marks)

QUESTION FIVE

a) Define the following terms:

(i)	Colligative property	(1 mark)
(ii)	Monodisperse sol	(1 mark)
(iii)	Polydisperse sol	(1 mark)
(iv)	Number average molecular mass $(\overline{M}n)$	(1 mark)

- b) Explain the following:-
 - (i) In the osmatic pressure method for macromolecular mass determination, the data are normally extrapolated to infinite dilution. (3 marks)
 - (ii) The molecular mass determined by the osmatic pressure method is often referred to as the "Number average molecular mass". (2 marks)
- c) The osmotic pressures of a sample of polyisobutylene in cyclohexane at 25°C at several concentrations are as follows:

c, g.mL ⁻¹	0.020	0.015	0.010	0.0075	0.005	0.0025
П, bar	0.0118	0.0067	0.003	0.00175	0.00091	0.00035

Determine the number average molecular mass of the sample.

{ R= 0.08314L. bar.K⁻¹mol⁻¹;
$$\frac{Lim}{c \to O} \left(\frac{\pi}{c}\right) = \frac{RT}{M}$$
 (11 marks)