Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES
 UNIVERSITY EXAMINATIONFOR THEDEGREE OF BACHELOR OF
 TECHNOLOGY IN APPLIED CHEMISTRY (ANALYTICAL AND INDUSTRIAL OPTION)
 BTAC13M

 ACH 4106: PHYSICALCHEMISTRYI

 ACH 4106: PHYSICALCHEMISTRYI}

SEMESTER EXAMINATION

DECEMBER 2013 SERIES
2HOURS
Instructions to candidates:

This paper consist of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

a) State:
(i) Law of equilibrium
(ii) Raults law
(iii) Le Chateliers principle
(iv) Limitation of Lewis theory
(v) Success of Arrhenius theory
(vi) Characteristics of Reversible reactions
(12marks)
b) Calculate :-
(i) Partial pressure of $\mathrm{H}_{2} \mathrm{~S}$ for the following equilibrium given partial pressure of

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \mathrm{Kp}=4.2 \times 10^{-3} \text { at } 500 \mathrm{~K} \quad(4 \text { marks })
$$

(ii) $\quad \mathrm{pH}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution given its solubility product as $\left.4.2 \times 10^{-6}(\mathrm{~mol} \mathrm{dm})^{3}\right)^{3}$
(5marks)
c) 66.0 grams of Vinyl ether $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ was dissolved in 46.0 grams of water and volume of solution made to 120 ml . Calculate :-
(i) Molality of the solution
(2marks)
(ii) Boiling point of the solution given ebuliscapic constant of water as $0.52^{\circ} \mathrm{C} \mathrm{Kg} / \mathrm{m}$
(2marks)
(iii) Vapour pressure of the solution given vapour pressure of water as 23.48 mmHg
(2marks)
d) Identify the class of the following Lewis acids:-
I. $\quad \mathrm{CO}_{2}$
II. $\quad \mathrm{SF}_{4}$
III. $\quad \mathrm{AlCl}_{3}$
(2marks)

QUESTION TWO

a) Different between positive and negative deviation in non -ideal solution (4marks)
b) Define organic indicators and explain color change of phenolphalein indicator in acidic media
(4marks)
c) Calculate the value of K_{C} for the following reaction

$$
2 \mathrm{~A}+3 \mathrm{~B} \rightleftharpoons 3 \mathrm{C}+4 \mathrm{D} \rightleftharpoons \mathrm{Kp}=0.05 \text { at } 127^{\circ} \mathrm{C}
$$

(4marks)

d) A solution of 0.142 grams of Napthalein in 20.25grams of Benzane elevate the Boiling point of Benzene by 0.284 Kelvin. Calculate Relative molecular moles of Napthalein given ebuliscopic constant as $0.52{ }^{\circ} \mathrm{Clg} / \mathrm{m}$
(4marks)
e) Define
(i) Buffer solution
(ii) Acidic salt
(iii) Double salt
(iv) Colligative properties

QUESTION THREE

a) Define an alkaline Buffer
(2marks)
b) A solution is prepared by dissolving 45 grams of compound X in enough $\mathrm{H}_{2} \mathrm{O}$ water to make IL volume of solution. If osmotic pressure of this solution is 10 mmHg at $25^{\circ} \mathrm{C}$. Calculate molar mass of solute $[\mathrm{R}=0.0821 \mathrm{~atm} \mathrm{~L} / \mathrm{K} \mathrm{mol}]$.
(4marks)
c) Explain briefly how HCl acts as Lewis acid is the following reaction

$$
\begin{equation*}
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \tag{4marks}
\end{equation*}
$$

d) 0.25 moles of A was mixed with 0.45 moles of B and allowed to react to form C . At equilibrium there were 0.16 moles of C in 1 litre vessel calculate equilibrium constant Kx
$\operatorname{Rxn} \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{g})$
(6marks)
e) A buffer was prepared by mixing weak acid HA and its salt NaA^{-}. With the help of reaction. Explain briefly how this buffer will behave when acid is added (4marks)

QUESTION FOUR

a) When NaOH is mixed with acetic acid Hydrolysis occurs. Write the reaction and expression of hydrolysis constant Kh
(4marks)
b) Calculate dissociation constant of acid in abuffer solution of pH 3.74 obtained on mixing 0.1 m acetic acid and 0.01 m sodium acetate in one litre vessel.
(4marks)
c) Determine the value and units of the universal gas constant at $0^{\circ} \mathrm{C}$ given density and molar mass of the gas as $1.785 \times 10^{3} \mathrm{~g} / \mathrm{m}^{3}$ and 39.95 grams per mole. (4marks)
d) Calculate the solubility product K_{SP} of CuBr given its solubility at $25^{\circ} \mathrm{C}$ as $2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{litre}$
e) Giving example explain the common ion effect (4marks)

QUESTION FIVE

a) State:
i) Characteristic of true liquid solutions.
(3marks)
ii) Assumption made in deriving ideal gas equation.
(2marks)
b) 0.15 mole of sulfur dioxide occupies a volume of $4.5 \times 10^{-4} \mathrm{~m}^{3}$ of 300 Kelvin. Using Van der Wall equation. Calculate the pressure it will exert given
$\left(\mathrm{a}=0.689 \mathrm{PaL}^{2} / \mathrm{mol}, \quad \mathrm{b}=5.64 \times 10^{-5} \mathrm{~atm} \mathrm{Lmol}^{-1}\right) \mathrm{R}=8.314$ joule $/ \mathrm{k} . \mathrm{mol} . \quad(5 \mathrm{marks})$
Vander Wall equation $\left(P+a\left(n^{2} / V^{2}\right)(V-n b)=n R T\right.$
c) Use le chatelier principle to predict direction of the following equilibrium when pressure and temperature are decrease
(2marks)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-92.2 \mathrm{Kj}$
d) A buffer solution was prepared by mixing 0.01 m sodium acetate in one litre. Given dissociation constant of acid as 1.8×10^{-5}. Calculate pH change when 1 ml of 1 m NaOH is added to one litre of this buffer
(4marks)
e) Mixture of propane and trichloromethane shows negative deviation from Rault's law sketch and label pressure - composition curves.

