

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY BTMBT 11M

ABT 4306 : DOWNSTREAM PROCESSING

SEMESTER EXAMINATION

DECEMBER 2013 SERIES 2 HOURS Instructions to candidates:

This paper consist of **FIVE** guestions Answer question **ONE** (compulsory) and any other **TWO** questions

QUESTION ONE

a)	Describe the principles behind separation by filtration	(6 marks)
b)	Highlight eight characteristics of a good gradient to be used in centrifugation	density gradient (8 marks)
c)	Describe the application of distillation as a downstream process	(5 marks)
d)	Explain the Debye-Huckel theory of salting out proteins at law salt concentration (6 marks)	
e)	Outline the methods used in dissociation of proteins and ligands from at	finity columns
		(5 marks)

QUESTION TWO

Discuss the ways of achieving protein precipitation (20 marks)

QUESTION THREE

Discuss how cavitations and sonication achieve cell disruption, highlight their limitation

(20 marks)

QUESTION FOUR

- a) State the expression of net force and frictional force a spherical particle experiences when centrifuged in a medium and derive the equation which describes the sedimentation rate of the particle (12 marks)
- b) Differentiate between differential and density gradient centrifugation (8 marks)

QUESTION FIVE

- a) Outline the factors affecting the stability of proteins during precipitation (6 marks)
- b) The solubility at different temperatures of certain proteins during crystallization in water were measured and the data recorded in the table below:

Temp	erature (°C)	Solubility (in 10ml water)	
0		0.15g	
20		0.30g	
40		0.65g	
60		1.10g	
80		1.70g	
(i)	Plot a graph of solubility against temp	perature	(4 marks)
(ii)	0.1g of the protein was mixed with 1 explain weather the protein will disso	.0ml of water and heated to lve or not	80°C. State and (3 marks)
(iii)	The solution in (II) above was cooled the protein appeared	d. Find the temperature in v	which crystals of (3 marks)
(iv)	The cooling described in (iii) above v in grammes of the protein that came of	was continued to O°C. Calculate to the solution	ulate the amount (4 marks)