

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY BTMBT 11M

ABT 4301: GENETIC ENGINEERING I

SEMESTER EXAMINATION

DECEMBER 2013 SERIES

2 HOURS

Instructions to candidates:

This paper consist of FIVE questions Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

a) Define the following terms

(i)	Sieving	(2marks)
(ii)	Chimera DNA	(2marks)
(iii)	Southern blot	(2marks)

b) Name the most suitable type of electrophoresis for separation of each of the following macromolecules:

(i)	20bp DNA	(1mark)
(ii)	70bp DNA	(1mark)
(iii)	100kDa protein	(1mark)
(iv)	50 kbp DNA	(1mark)

c)	Name TWO reasons crude lysates, as source of DNA, are only appropriate for a limited		
	range of applications	(4marks)	
d)	Name TWO types of cohesive ends	(2marks)	
e)	State the estimated activity of one unit of enzyme	(2marks)	
f)	List FIVE types of cloning vectors in order of the DNA size each can pack (Start w		
	smallest)	(5marks)	
g)	State the TWO main reasons for amplifying DNA by PCR	(2marks)	
h)	State any THREE means of causing cell Iysis and /or disruption to release	DNA	
		(3marks)	
i)	Name TWO types of gene therapies	(2marks)	

QUESTION TWO

a)	Describe the classical procedure of gene cloning	(12marks)
b)	Describe DNA isolation by salting out method	(8marks)

QUESTION THREE

a)	Highlight the key	characteristics of the	e main classes of	f restriction enzymes	(8marks)
----	-------------------	------------------------	-------------------	-----------------------	----------

b) Describe the principle of conventional and real-time PCR. (12marks)

QUESTION FOUR

a)	Describe the process of restriction mapping	(10marks)
b)	Describe DNA splicing by addition of polymers	(10marks)

QUESTION FIVE

a)	Explain what qualifies plasmids as cloning vectors	(12marks)
b)	Describe ligase and its working conditions	(8marks)