

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY BTMBT 12J

ABT 4206: BIOCHEMISTRY TECHNIQUE AND INSTRUMENTATION I

SEMESTER EXAMINATION

DECEMBER 2013 SERIES	2 HOURS
Instructions to candidates:	

This paper consist of **FIVE** guestions Answer question **ONE** (compulsory) and any other **TWO** questions

QUESTION ONE

a) Given a solution of 0.002mol⁻¹ HNO₃, Calculate

	(i)	$[\mathrm{H}^+]$	(1mark)
	(ii)	[OH ⁻]	(1mark)
	(iii)	pH	(1mark)
	(iv)	рОН	(1mark)
b)	b) Differentiate between the following terms		
	(i)	Chromophore and Auxochrome	(1mark)
	(ii)	Hyperchromic shift and hypochromic shift	(1mark)
	(iii)	Kosomotropic salt and chastropic salt	(1mark)

c) Compare and contrast between the following terms

- (i) Atomic Absorphon spectroscopy (AAS) and atomic emmissiom spectroslopy (AES) (4marks)
- (ii) Continuous and discontinuous methods of enzyme assays (4marks)
- d) A solution cantain 0.10mol L⁻¹ acetic acid and 0.10mol L⁻¹ sodium acetate. If the pKa of acetic acid is 4.76 calculate the pH of the solution before and after adding 0.05mol L⁻¹ NaOH and compare the value with the pH of the solution of 0.05mol L⁻¹ NaOH

(6marks)

- e) (i) Outline SIX ways of locating the separated components during electrophoresis (3marks)
 - (ii) Using specific examples differentiate between Anionic and cationic exchanges (4marks)
 - (iii) Explain the role of plaster of pairs (hydrated calcium sulphate) in thin layer chromatography (TLC) (2marks)

QUESTION TWO

- a) Discuss the factors that may lead to alteration of results during atomic absorption spectroscopy (AAS) analysis and the ways of overcoming them (12marks)
- b) A florescent compound gives a reading of 10 in a flourometer at concentration of $20\mu\text{mol}\ \text{L}^{-1}$ if the cuvate has a light path of 1cm and the compound has an extinction coefficient of 5270 what fluorescent reading would be expected with a concentration of $40\mu\ \text{mol}^{-1}$ (4marks)
- c) Illustrate the absorption spectral analysis of oxidized and reduced form of Nicotinamide ademine dinucleolids (NAD) (4marks)

QUESTION THREE

Discuss the classification of chromatographic techniques

(20marks)

QUESTION FOUR

- a) Outline the advantages of instrumental methods of biochemical analysis (6marks)
- b) Given the equilibrium covalent (Keq) and density of water at 25°C to be 1.8×10^{-16} m and 1000Kgm³ respectively show that the pH of pure water is 7.0 if the atomic masses of H = 1 and O = 16 (8marks)
- c) 3.46g of K₂ HPO₄ and 2.27g of KH $_2$ PO₄ were dissolved in 250ml of deionized water. Calculate the pH of the resulting solution (pKa = 7.2, K = 39, H = 1, P= 31, O = 16) (6marks)

QUESTION FIVE

- a) Outline the characteristics of a good spectrophotometer (5marks)
- b) 20µL of glutamate decarboxylase extract was treated with gintamate in a total volume of 3ml and it gave carbon dioxide as shown in the table below

Time (min)	Volume (ml)
0.00	0.00
0.50	0.20
1.00	0.40
1.50	0.61
2.00	0.80

Calculate the enzyme activity in μ mol min⁻¹ ml⁻¹

(6marks)

c) Different proteins of different molecular weights were precipitated using different aceton concentration (% v/v) as shown in the table below.

Molecular weight (Dalton)	Acetone concentration (% V/V)
39811	7.5 – 12.5
31623	17.5 – 22.5
25119	27.5 - 32.5
19953	37.5 – 42.5
15849	47.5 - 52.5
12589	57.5 - 62.5

Two proteins of unknown molecular were precipitated by 22.5 - 27.5 and 32.5 - 37.5 (% v/v) of Acetone. Approximate the molecular weights of these unknown proteins (9 marks)