

Faculty of Applied and Health Sciences

DEPARTMENT OF ENVIRONMENT AND HEALTH SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MARINE RESOURCE MANAGEMENT

BMRM ACH 4102 : FUNDAMENTALS OF CHEMISTRY

SEMESTER EXAMINATION

DECEMBER 2013 SERIES 2 HOURS Instructions to candidates:

This paper consist of **FIVE** guestions Answer guestion **ONE** (compulsory) and any other **TWO** guestions

QUESTION ONE

- a) Specify the set of quantum numbers used to describe an atomic orbital and state the possible values of each. (3marks)
- b) Describe the characteristics of a $dx^2 y^2$ orbital (3marks)
- c) 36ml of a HNO₃ solution is required to neutralize 25ml of a 0.53M Ba $(OH)_2$ solution. Calculate the concentration of the acid solution. (H = 1, N = 14, 0 = 16, Ba = 137)

(4marks)

- d) Write the equilibrium constant expression and calculate its numerical value for the basic dissociation of NaH₂PO₄, given Ka1 value for H₃PO₄ is 7.5×10^{-3} . (4marks)
- e) Explain the hydrolysis of salts that produce acidic solutions, with an appropriate example.

(4marks)

f) Write the solubility equilibrium equations and solubility product expressions for the

following compounds

- (i) $Ca_3(PO_4)_2$
- (ii) PbCrO₄
- (iii) Fe(OH)₃

(3marks)

- g) Indicate the oxidation number of the underlined atom in each of the following species
 - (i) $\underline{S}_2 O_3^{2-}$
 - (ii) $K_2\underline{Cr}O_4$

(2marks)

- h) Describe the characteristics of amphoteric oxides with an appropriate example (3marks)
- i) Explain the differences in bonding character of NaBr and SO₃ (4marks)

QUESTION TWO

- a) Draw the Lewis structures for the following species,
 - (i) SO_3
 - (ii) AlCl₃

(4marks)

- b) State any TWO failures of Bohr's theory of the hydrogen atom. (2marks)
- c) Define the following

(i)	Pauli's exclusion principle	(1mark)
(ii)	Hund's rule	(1mark)
(iii)	The Aufbau principle	(1mark)

- d) Write the ground state electron configuration of the following
 - (i) $Mn^{4+} (\mathbf{Z} = 24)$
 - (ii) Ge (Z = 32)

(2marks)

- e) Explain the observation that the radii of isolectronic cations decrease with increase in oxidation number
 (2marks)
- f) For the ionic equation

 $CN^{-}(aq) + MnO_{4}^{-}(aq) \rightarrow CNO^{-}(aq) + MnO_{2}(s)$

- (i) Write the unbalanced oxidation and reduction half reactions (1mark)
- (ii) Write the balanced oxidation and reduction half reactions in basic medium, showing all the steps involved in balancing (4marks)
- (iii) Write the overall balanced reaction. (2marks)

QUESTION THREE

a) Define the following

(i)	Electron affinity	(1mark)
(ii)	Electronegativity	(1mark)

b) Explain why the electron affinities of Mg(Z = 12) and Ar(Z = 18) are less than zero

(4marks)

- c) Electronegativity generally decreases from top to bottom in a group of the periodic table.
 Explain this observation (2marks)
- d) Explain the variation in the metallic characteristics of C, Si, Ge, Sn and Pb (4marks)
- e) (i) Explain the differences in the ionization energies of Be ($\mathbb{Z} = 4$) and B ($\mathbb{Z} = 5$)

(4marks)

(ii) The 1st ionization energies of Na ($\mathbb{Z} = 11$) and Mg ($\mathbb{Z} = 12$) are 495.9 and 738.1 KJmol⁻¹, respectively. However, the 2nd ionization energies of the same elements are 4,560 and 1,450 KJmol⁻¹. Explain this observation (4marks)

QUESTION FOUR

a)	State	L'e chatelier's principle	(2marks)
b)	Expla	in how the common ion affects the solubility of CaCO ₃ in a K ₂ CO ₃	solution.
			(4marks)
c)	c) Dilute NaOH is introduced into a solution that is 0.03M in Cu^{2+} and 0.02M in Mn^{2+} .		
	(i)	Which hydroxide precipitates first?	(1mark)
	(ii) Calculate the concentration of OH ⁻ required to initiate precipitation of the second		on of the second
		hydroxide.	(4marks)
	(iii)	Determine the concentration of the cation forming the less so	oluble hydroxide
		when the more soluble hydroxide begins to precipitate?	(3marks)
		$(K_{SP} \text{ for } Cu(OH)_2 = 2.2 \text{ x } 10^{-20}, \text{ and } Mn(OH)_2 = 2 \text{ x } 10^{-13})$	
d)	Outli	ne the natural processes associated with nitrification	(4marks)
e)	CO bu	urns in air, but CO ₂ does not burn. Explain this observation	(2marks)
QUESTION FIVE			
a)	Defin	e buffer capacity	(2marks)

a)	Define	buffer capacity	(2marks)	
b)	A buffer solution was prepared by mixing 500ml of $0.100m \text{ NH}_3$ solution and 500ml of			
	0.200r	n NH ₄ Cl solution. If Ka = 5.70×10^{-10} :		
	(i) Write the equilibrium equation for the acidic dissociation of NH ₄ Cl (1mark)			
	(ii) Write down the equilibrium equation for the basic dissociation of NH_3 (1mark)			
	(iii)	Calculate Kb.	(2marks)	
	(iv)	Calculate the H ⁺ ion concentration of the solution	(3marks)	
	(v)	Calculate the pH of the solution	(1mark)	
c)	Explai	n the nature and how a cation exchange resin functions	(3marks)	
d)	d) Define the following terms as applied to electrochemical cells.			
	(i)	Standard oxidation potential	(1mark)	

(ii) Standard reduction potential

(1mark)

e) An electrochemical (galvanic) cell consists of a Ag electrode in contact with 1M AgNO₃ solution a Mg electrode in Tm Mg (NO₃) ₂ solution.

(i)	Identify the anode and cathode electrodes	(1mark)
(ii)	Write half cell reactions of the respective electrodes	(2marks)
(iii)	Calculate the cell electromotive force ε .	(2marks)

 $(\epsilon^{\circ} Ag^{+}/Ag = +0.8V, \epsilon^{\circ} Mg^{2+}/Mg = -2.37V)$