TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Heath and Applied Sciences DEPARTMENT MATHS AND PHYSICS

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF SCIENCE CIVIL ENGINEERING

SMA 2371: PDE
END OF SEMESTER EXAMINATIONS SERIES: APRIL 2014
TIME: 2 HOURS

INSTRUCTIONS:

- You should have the following for this examination:
- Answer booklet
- Calculator
- Answer question ONE (Compulsory) and any other TWO.

This paper consists of Three printed pages

QUESTION 1 (Compulsory)

a) Verify that $u=F(x-c t)+9(x+c t)$ is a solution of the one-dimensional wave equation $u t t=c^{2} u x x$.
b) Obtain the solution to the following initial value problem $u x x=4 x y+e^{x}$ with initial conditions $u(0, y)=y, u x(0, y)=1$
c) Find the I ntegral curves of the equations:

$$
\begin{equation*}
\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z} \tag{6marks}
\end{equation*}
$$

d) Classify the following equation and hence determine its characteristics of the differential equation.

$$
4 u x x+u \quad y y=0 \quad(6 \text { marks })
$$

e) Find the fourier transform of

$$
\begin{equation*}
f(x)=e^{-9 x^{2}} \quad a>0 \tag{8marks}
\end{equation*}
$$

QUESTION 2

a) i) Classify the langranses equation $\left(x^{2}-1\right) p+x y q+y^{2} z=x^{3}-1$ where P and Q have their visual meaning as either Linear, Semi linear or Quasi linear.
ii) Use the method of characteristics to find the solution of the equation $\left(x^{2}-1\right) p+x y q+y^{2} z=x^{2}-1$ which is zero on the positive $\mathrm{y}-$ axis.
(8 marks)
b) Using the method of separation of variables solve

$$
\begin{equation*}
\frac{d u}{d>1}=2 \frac{d y}{d t}+u \quad \text { where } \quad u(x, 0)=6 e^{-3 x} \tag{10marks}
\end{equation*}
$$

QUESTION 3

a) Test for the integrability of the equation $21 t^{3} d x-z d y+2 y d z=0$
b) Reduce the equation $2 u x x+3 u x y+u y y=0$ to canonicah form.

QUESTION 4

a) Solve the homogeneous differential equation
$y z(y+z) d x+x z(x+z) d y+x y(x+y) d z=0$
marks)
b) Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersections with the family of planes parallel to $z=c$.
(10 marks)

QUESTION 5

a) Find the surface which intersects with the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passed through the circle $x^{2}+y^{2}=1, z=1$
(10 marks)
b) Solve the following equation
$\frac{d^{2} z}{d x^{2}}-2 \frac{d t}{d x}+\frac{d t}{d y}=0 \quad$ by the method of separation of variables.

