

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (DSLT 10 J / DAC 10J)

ACH 2310: INSTRUMENTATION III

SPECIAL/SUPPLEMENTARY: EXAMINATIONS

SERIES: FEBRUARY 2013 TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper - Answer booklet This paper consists of *FIVE* questions. Answer Question **ONE** (compulsory) and any other **TWO** questions *This paper consists of 2 PRINTED pages*

Question ONE

a)	(i)	Define the following terms	
u)	(1)	I. Atomization in AAS	(2marks)
		II. Resolution in HPLC	(2marks)
	(ii)	Distinguish between isocratic elution and gradient elution	(4marks)
b)	(i)	A 20ppm solution of copper gives an AAS signal of 15 percent transmitta	nce. Calculate
		the sensitivity of the instrument for copper ($Cu = 64$)	(4marks)
	(ii)	List FOUR quantitative methods used in both HPLC and GLC	(4marks)
	(iii)	Outline the basic principle involved in the 'Normalized area' method	of quantitative
		HPLC	(4marks)
c)	(i)	Distinguish between 'rich' and 'lean' flames as applied in AAS	(4marks)
	(ii)	Explain why solvents are purged off dissolved air during analysis by HPL	· /
	(iii)	List FOUR characteristics of the mobile liquid phase in HPLC	(4marks)
d)	(i)	The chromatogram of a sample containing 1- and 2- naphthol had two peaks with	
		retention times 228 and 235 seconds. Their widths at half-height were 2.4	sec and 2.5 sec
		respectively. Calculate the average number of theoretical plates.	(4marks)
	(ii)	State the advantages of AAS	(4marks)
		State TWO causes of deviation from Beer-Lambert's Law in AAS	(2marks)

Question TWO

a)	(i)	Nam	e FOUR major parts of the HPLC instrument	(2marks)
	(ii)	Subs	nutes respectively, on a	
		30.00	m column. An unretained species passes the column in 1.	.30 minutes. The peak
		widtł	ns for A and B are 1.11 and 1.21 minutes, respectively. Calcu	ulate:
		I.	The column resolution	(1mark)
		II.	Average number of theoretical plates	(4marks)
		III.	The plate height	(2marks)

IV. State ONE advantage of using internal standard method in HPLC or GLC.

(1mark)

b) Draw a labeled diagram of a hollow cathode lamp and give ONE disadvantage of using such lamps in AAS. (5marks)

Question THREE

- a) (i) Distinguish between 'releasing' and protecting agent as used in atomic spectroscopy, giving an example of each (5marks)
 - (ii) Describe the following terms as used in HPLC or GC stating when and how they are applied

I.	Reversed phase – phase HPLC	(4marks)
II.	Resolution (Rs)	(4marks)

b) Describe how a liquid can be injected into the HPLC column (2marks)

Question FOUR

a)	(i)	Explain the corpuscular theory of electromagnetic radiations and state i	its applications in	
		AAS.	(4marks)	
	(ii)	Give FOUR requirements for HPLC column packing materials	(4marks)	
b)	(i)	Give reasons to explain why capillary columns (small diameter colun	nns) are preferred	
		ever packed columns (larger diameter columns) in HPLC		
(4marks)				
	(ii)	Explain haw a signal is produced in AAS	(3marks)	
Question FIVE				
a) Differentiate between:				
,	(i)	Dead and retention time	(2marks)	
1 \	(ii)	Mobile and stationary phase as used in chromatography.	(2marks)	

b)	Define	the terms:
	(i)	Elution
	(ii)	Eluent

	(i)	Elution	(1mark)
	(ii)	Eluent	(1mark)
	(iii)	Chromatogram	(2marks)
c)	(i)	Write the van Deemter equation and identify all symbols in it	(3marks)
,	(ii)	Explain briefly how 'standard addition' technique is applied in AAS	(4marks)