

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

(A Centre of Excellence)

Faculty of Applied and Health Sciences

DEPARTMENT OF **PURE AND APPLIED SCIENCES**DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY
(DSLT 12J)

ACH 2208: CHEMISTRY OF S & P BLOCK ELEMENTS

SPECIAL/SUPPLEMENTARY: EXAMINATIONS

SERIES: FEBRUARY 2013

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper

This paper consists of 3 PRINTED pages

- Answer booklet
This paper consists of *FIVE* questions.
Answer Question **ONE** (compulsory) and any other **TWO** questions

Qu

uesti	ion ON	NE				
a)	(I)	Write down the electronic configuration of the following in	Spd notation			
	、 /	(i) K(3)	(1mark)			
		(ii) L (12)	(1mark)			
		(iii) $M(31)$	(1mark)			
		(iv) N(14)	(1mark)			
		(v) $O(15)$	(1mark)			
		(vi) P(8)	(1mark)			
		(vii) Q(17)	(1mark)			
	(II)	Which of the elements in aI above				
		(i) Forms complexes of the nature [MCl ₄] ²⁻	(1mark)			
		(ii) Has a high affinity for oxygen and thus forms compl				
		(iii) Its ion is highly hydrated and drags in aqueou				
		conductivity	(1mark)			
		(iv) Is weakly metallic	(1mark)			
		(v) Is a soft solid	(1mark)			
		(vi) Oxidizes the rest of the elements except fluorine	(1mark)			
		(vii) Is a diatomic gas	(1mark)			
b)	Complete the following equations					
	(i)	$H^- + H_2O \longrightarrow A + B$				
	(ii)	$(C \underline{=} C)^{2-} + 2H_2O \longrightarrow C + HC \underline{=} C - H$				
	(iii)	$N^{3-} + 3H_2O \longrightarrow NH_3 + D$	(4marks)			
c)	Explain the following of					
	(i)	Beryllium forms more complexes than magnesium which	also forms move complexes			
		than calcium. Give two examples	(3marks)			
	(ii)	Boren does not form the B ³⁺ cation while Aluminium does	(2marks)			
	(iii)	Hydrates aluminium compounds are acidic. Illustrate v	with the use of a balanced			
		chemical equation.	(3marks)			
d)	State the industrial application of the following					
	(i)	NH_3				
	(ii)	Al				
	(iii)	CaCO ₃				
	(iv)	Magnesium	(4marks)			
uesti	ion TV	vo				
a)	(i)	Give the name and chemical formula of the ore from wh	nich Aluminium is extracted			
		(2marks)				
	()		1 (2 1)			

Qu

- State the solvent used in the extraction of aluminium arid write it formula. (2marks) (ii)
- Give reason(s) why the graphite rods are to be replaced time after time in the extraction (iii) of aluminium . Write an equation for the reaction taking place. (3marks)
- State the two major impurities in the extraction n of Aluminion and explain how they are (v) removed. (3marks)
- Explain FIVE properties of Aluminium b) (i)

(5marks)

Outline FIVE applications of Aluminium (ii)

(5marks)

Question THREE

Graphite and diamond are allotropes of carbon and are different in many respects.

a) Explain the differences between graphite and Diamond in terms of

(i)Bonding and structure(6marks)(ii)Conductivity(2marks)(iii)Density(2marks)(iv)Applications(4marks)

b) With reference to the electron pain repulsion theory predict the shapes of the following molecules and ions

(i)	NH_3	(1 ½ mark)
(ii)	$\mathrm{NH_4}$	(1 ½ mark)
(iii)	CO_2	(1 ½ mark)
(iv)	H_2O	$(1 \frac{1}{2} \text{ mark})$

Question FOUR

- a) Explain any FIVE special features of nitrogen that makes it different from the rest of the elements in group VB (10marks)
- b) Explain the following

	(i)	Phosphine is less soluble than NH ₃	(2marks)
	(ii)	NH ₃ has higher boiling point than pH ₃ even though it is heavier.	(2marks)
	(iii)	pH ₃ is more acidic than NH ₃	(1mark)
	(iv)	BiH ₃ is a better reducing of agent a than the rest of group VB hydrides	(2marks)
c)	Outli	ne any THREE applications of nitrogen	(3marks)

Question FIVE

- a) Give reasons for the following
 - (i) Water boils at 100°C while H₂S is a gas at room temperature. (3marks)
 - (ii) SiO_2 is a high melting point solid white CO_2 is a gas at room temperature.

(3marks)

- (iii) HF boils at higher temperature than HCl (2marks)
 b) Phosphorus forms trivalent and pentavalent compounds. Explain with use of appropriate
- diagrams. (6marks)
- c) (i) Draw the open structure of water (2marks)
 - (ii) Give reasons why water is a universal solvent (2marks)
 - (iii) State TWO applications of sulfurs (2marks)