TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Engineering \& Technology
 DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING

CERTIFICATE IN ELECTRICAL POWER ENGINEERING II

AMA 1151: ENGINEERING MATHS II

END OF SEMESTER EXAMINATIONS
SERIES: APRIL 2014
TIME: 2 HOURS

INSTRUCTIONS:

- This paper consists of FIVE questions.
- Answer question ONE (Compulsory) and any other TWO questions.

This paper consists of Three printed pages.

QUESTION 1 (Compulsory)

a) Solve for $\boldsymbol{\theta}$ such that $0 \leq \theta \leq 360^{\circ}$ and $2 \sin 2 \theta+\sin 2 \theta-1=0$.
b) Solve for $\boldsymbol{\theta}$ given $0 \leq \theta \leq 180^{\circ}$ and $4 \sin 2 \boldsymbol{\theta}+1=0$.
c) Draw the graph of $y=2 x^{3}+x^{2}-3 x+1$ from $x=-4$ to $x=4$ use the graph to solve $-2 x^{3}-x^{2}+4 x-1=0$
(8 marks)

QUESTION 2

A right pyramid has a rectangular base $A B C D$ with $A B=12 \mathrm{~cm}$ and $B C=16 \mathrm{~cm}$. Point M is the midpoint of Line $A B$ and N is the mid-point of line $B C$. O is the center of the base and $V O=15 \mathrm{~cm}$. calculate:
i) The length of a slan't edge
ii) The angle between lines AV and VC
iii) The angle between lines AB and BV .
iv) The angle between the line $V D$ and the base $A B C D$.
v) The angle between the planes ABCD and VBC
vi) The angle between the planes ABV and VDC.
(20 marks)

QUESTION 3

a) Draw the graph of $y=3 \cos (2 \theta+30)$ for values of $\boldsymbol{\theta}$ from 0 to 180° taking the interval of 30°.
(5 marks)
b) Use your graph to solve
i) $3 \operatorname{Cos}(2 \theta+30)^{0}=-1$
ii) $\cos (2 \theta+30)^{0}=-2 / 3$
c) State the phase angle and wave length of $y=3 \cos (2 \theta+30)^{0} .(2$ marks $)$
d) Two planes A and B leave an airport simultaneously at 9.3-am. Plane A flies on the bearing of 070° from the airport at a speed of $400 \mathrm{~km} / \mathrm{h}$ and B flies on a bearing 290° at a speed of $450 \mathrm{~km} / \mathrm{h}$.
Calculate:
i) Their distance apart after 3 hours correct to the nearest Km .
(4 marks)
ii) The bearing of A from B after 3 hours correct to the nearest degree.
iii) After 3 hours B decides to head straight to the current position of A. What time will it get to this point correct to the nearest minute?
(3 marks)

QUESTION 4

a) Draw the graphs of $y=\sin 3 x$ and $y=\cos (x+30)$ on the same axis for $-180^{\circ} \leq x \leq 180^{\circ}$.
b) Use the graph to:
i) Solve $\cos (x+30)^{0}-\sin 3 x=0$
ii) $3 \operatorname{Cos}\left(x+30^{\circ}\right)-2=0$
(4 marks)
c) Solve for $\boldsymbol{\theta}$, given $2 \sin ^{2} 3 \theta+3 \cos 3 \theta+3=0$ and $0 \leq \theta \leq 360^{\circ}$

QUESTION 5

a) A frustram is made by cutting a small pyramid of height 3 cm from a pyramid of height 9 cm . the slant height of the cut off pyramid is 5 cm and the base is square. If the frustrum is open on both ends. Calculate its surface area.
b) i) Construct a table of values for the function $y=x^{2}-x-6$ for $-2 \leq x \leq 4$
ii) Draw the graph of the function $y=x^{2}-x-6$ for $-2 \leq x \leq 4$.
iii) By drawing a suitable line on the same grid, estimate the roots of the equation: $x^{2}-2 x-2=0$

