

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 10J)

ACH 2318 : INSTRUMENTAL METHODS OF ANALYSIS

SPECIAL/SUPPLEMENTARY: EXAMINATIONS SERIES: FEBRUARY 2013 TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper
Answer booklet
This paper consists of *FIVE* questions.
Answer Question **ONE (compulsory)** and any other **TWO** questions *This paper consists of 4 PRINTED pages*

Question ONE

- a) (i) State and explain THREE factors which affect the efficiency of a chromatographic column (3marks)
 - (ii) Give FOUR factors influencing vibrational frequencies in IR spectroscopy. (2marks)
 - (iii) Explain briefly the nature of TWO different types of flames used I n AAS. (3marks)
- b) (i) Give THREE advantages why using narrower a wavelength band is preferred in spectroscopic analysis. (3marks)
 - (ii) Define the following terms as used in UV visible spectrophotometry. (4marks)
 - I. Auxochrome
 - II. Chromophore
 - III. Hypochromic effect
 - IV. Bathochromic effect
 - (iii) How many fundamental vibrational frequencies would you expect to observe in the infrared absorption spectrum of CO₂. Justify your answer. (5marks)
- c) (i) Give the difference between normal phase and reversed phase chromatographic techniques. (4marks)
 - (ii) Explain THREE reasons why temperature control is important in HPLC and LC analysis.

(3marks)

(iii) State THREE functions performed by power supply system in UV spectrophotometers.

(3marks)

Question TWO

a) (i) Describe briefly the working principles of a double beam spectrophotometer (Use a block diagram). (5marks)

(ii) State THREE advantages of a double beam spectrophotometer over a single beam spectrophotometer.

(3marks)

- (iii) Define the following terms
 - (I) Releasing agent
 - (II) Protecting agent

© 2013 – Technical University of Mombasa

(III) Dead time

(IV) Attenuation

b) (i) Calculate the approximate frequency of the C-H stretching vibration from the following

data.			
Κ	=	500 Nm ⁻¹ = 5.0×10^5 gS ⁻¹ (since 1N = 10^3 gm ⁻¹)	
Mc	=	Mass of carbon atom $= 2.0 \times 10^{-24} g$	
MH	=	Mass of Hydrogen atom = 1.6×10^{-24} g	
С	=	$3.0 \times 10^8 \text{ ms}^{-1}$	
			(3marks)

Question THREE

a)	(i)	Define	e :				
		I.	Monochron	nator			
		II.	Noise				
							(2marks)
	(ii)	State I	FOUR metho	ds used to prep	pare solid samples for 1	IR analysis	(2marks)
b)	(i)	State 7	THREE cause	es of deviation	from Beer-Lambert La	aw	(3marks)
	(ii)	Identi	fy THREE ty	pes of chemica	al reactions occurring i	n the flame in FE	S (3marks)
	(iii)	List F	OUR types of	f Nebulization			(2marks)
c)	A sto	ck soluti	on was made	e by dissolving	, 0.900g of Potassium	permanganate (K	(MnO ₄) in water
	and	diluting	to 250 cm^3 .	Calculate the	concentration of the	solution in ppm	with respect to
	mang	ganese (R	RFM of KMn	$O_4 = 158.036)$			(3marks)

Question FOUR

a)	(i)	Describe the working principles of a phototube detector	(5marks)
	(ii)	Name TWO types of filters and TWO types of monochromators.	(2marks)
	(iii)	Give THREE requirements of a radiation sources.	(3marks)
b)) Describe determination of the formula of complexes by Job's method		

Question FIVE

a) (i) A solution containing TWO substances P and Q has an absorbance in 1cm curette of 0.36 at 350Aanumeters and 0.225 at 400nm. The molar absorption coefficients of P and Q at this wavelength are given below (5marks)

Compound	Wavelength(Wavelength (λ)	
	At 350nm	At 400nm	
Р	1500	3000	
Q	7000	6500	

Calculate the concentrations of P and Q

(ii) Identify all symbols in the expression

(2marks)

$$\mu = \underline{M_1 \underline{M_2}} \\ M_1 + M_2$$

(iii) Frequency of vibration is given by the equation

$$\upsilon = \frac{1}{2\pi c} \sqrt{\frac{K}{\mu}}$$

Identify the symbols v,c and k and state one physical significance of f. (2marks)

(b)

(i)	A column with height 100cm gave the following experimental results.
-----	---

Trial(no.)	Flow rate cms ⁻¹	tRSec	W(sec)
1	1.0	300	80
2	2.5	100	24
3	5.0	50	10

Calculate the number of theoretical plates N and the Height equivalent of a theoretical plate (HETP) (3marks)

(ii) State the physical significance of number theoretical plates (N) and the height equivalent of a theoretical plate H. in HPLC.

(2marks)

(iii) Give One application of IR in the industry

(1mark)