

TECHNICAL UNIVERSITY OF MOMBASA

School of Business

Department of Management Science

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN PROCUREMENT AND MATERIALS MANAGEMENT DIPLOMA IN FRONT OFFICE OPERATIONS & CUSTOMER CARE DIPLOMA IN LOGISTICS AND TRANSPORT MANAGEMENT DIPLOMA IN SALES & MARKETING MANAGEMENT DIPLOMA IN SALES & MARKETING MANAGEMENT DIPLOMA IN HUMAN RESOURCE MANAGEMENT DIPLOMA IN BUSINESS ADMINISTRATION DIPLOMA IN BUSINESS MANAGEMENT DIPLOMA IN ACCOUNTANCY DIPLOMA IN SHIPPING BAC 2103: BUSINESS STATISTICS END OF SEMESTER EXAMINATION SERIES: APRIL SERIES TIME: TWO HOURS DATE: APRIL 2022

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question **ONE** (Compulsory) & any other **TWO** questions. **Do not write on the question paper.**

QUESTION ONE

a) Distinguish between:-

i) Descriptive statistics and inferential statistics.*ii*) Primary data and secondary data.

b) Highlight **FIVE** main features of a good questionnaire.

c) National income sector figures of a country for 3 years are given in the following table: ©Technical University of Mombasa
 Page 1 of 6

(4 marks) (4 marks)

(5 marks)

			Nation	ial Incon	ne (Sh. Mill	lions)			
Ī	Year	Ag	griculture	Man	ufacturing	Tourism	Tota	ıl	
	2015	17	0	90		80	340		
	2016	19	0	120		90	400		
_	2017	20	0	140		120	460		_
Requir	ed drav	v:							
	i) ii) iii)	a simple ba a componer a multiple b	ar chart nt bar char oar chart	t					(2 ma (3 ma (3 ma
<i>d</i>) Calo	culate tl	ne <i>arithmetic</i>	c mean, m	<i>edian</i> and	d <i>mode</i> from	n the follo	wing data.		
Marks	51	52	53	54	55 50	5 57	58	59	60
	10	10	11	10	10 1/	1 1 6	10	0	2
No. of Studen	10 ets	12	11	18	18 1	/ 16	10	8	2
No. of Studen	10 ets	12	11	18	18 1	/ 16	10	8	2 (9 ma
No. of Studen	10 ets	12	11	18	18 1	/ 16	10	8	2 (9 ma
No. of Studen	TWO	12		18	18 1	/ 16	10	8	2 (9 ma
No. of Studen ESTION a) The	TWO e table	shows the re	corded wir	18 ngspans, :	in meters, o	f 100 enda	IU ingered vultu	8 ures (birc	2 (9 ma ls).
No. of Studen ESTION a) The ingspan w ₂ (m)	TWO e table	shows the re $0 \le w < 1.5$	corded wir 1.5 ≤	18 ngspans, : w < 2.0	in meters, o $2.0 \le w$	f 100 enda	ungered vulture $2.5 \le w < 3$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$
No. of Studen ESTION a) The ingspan w (m) equency (f	TWO e table	shows the re $0 \le w < 1.5$	corded wir 1.5 ≤	18 ngspans, : w < 2.0 20	in meters, o $2.0 \le w$	f 100 enda y < 2.5	$\frac{10}{2.5 \le w < 3}$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$ 11
No. of Studen ESTION a) The ingspan w (m) equency (f	TWO e table c, 1.	shows the re $0 \le w < 1.5$	11 corded wir $1.5 ≤$	18 ngspans, : w < 2.0 20	in meters, o $2.0 \le w$	f 100 enda , < 2.5	angered vulture $2.5 \le w < 3$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$ 11
No. of Studen ESTION a) The ingspan w (m) equency (f	TWO e table	shows the re $0 \le w < 1.5$	11 corded wir $1.5 ≤$	18 ngspans, : w < 2.0 20	in meters, o $2.0 \le w$ 37	f 100 enda	ungered vulture $2.5 \le w < 3$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$ 11
No. of Studen ESTION a) The ingspan w (m) equency (f equency (f	TWO e table f)	shows the re $0 \le w < 1.5$ 4 values of:	11 corded wir 1.5 ≤	18 ngspans, : w < 2.0 20	in meters, o $2.0 \le w$ 37	f 100 enda	ungered vulture $2.5 \le w < 3$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$ 11
No. of Studen ESTION a) The ingspan w (m) equency (f equency (f Estima	TWO e table $\frac{1}{2}, 1$ f) the the v $\frac{1}{2}, Qu$	shows the rest $0 \le w < 1.5$ 4 values of:	tion	18 ngspans, : w < 2.0 20	in meters, o $2.0 \le w$ 37	f 100 enda	$\frac{10}{2.5 \le w < 3}$	8 ures (birc 3.0 3	2 (9 ma ls). $0 \le w < 3.5$ 11

	2020	2021
January	40	42
February	48	45
March	42	60
April	58	64
May	60	58
June	80	70
July	75	80
August	60	75
September	55	60
October	50	48
November	60	55
December	90	95

b) The following are sales (Sh.000) of M&M Enterprise for the years 2020 and 2021:-

Required:-

Construct a *Z-Chart* for the year 2021.

(10 marks)

QUESTION THREE

a) The noise levels at 30 locations near an outdoor concert venue were measured to the nearest decibel. The data collected are shown in the grouped frequency table:-

	Noise (decibels)	$65 \le d \le 69$	$70 \leq d < 74$	$75 \le d < 79$	$80 \le d < 84$	$85 \leq d < 89$	$90 \leq d < 94$
	Frequency (f)	2	4	6	6	8	4
©Te	chnical Universit	ty of Mombasa				Page :	3 of 6

From the following distribution, compute:-

i)	the mean	(2 marks)
ii)	the median	(3 marks)
iii)	the mode	(3 marks)
iv)	the standard deviation	(4 marks)

b) From the following frequency distribution table:-

Marks	No. of students
0-10	7
10-20	12
20-30	9
30-40	18
40-50	15
50-60	20
60-70	16
70-80	13
80-90	10
90-100	4

Required:-

i)	Draw a histogram and superimpose frequency polygon.	(5 marks)
ii)	From the histogram, find the value of the mode.	(3 marks)

QUESTION FOUR

a) Explain briefly **FOUR** sampling techniques as used in statistics.

(8 marks)

©Technical University of Mombasa

- *b*) From the following data, calculate index numbers for the year 2015 taking 2014 as the base year and using the following formulae:
 - *i*) Laspeyre's
 - *ii)* Paasche's
 - *iii)* Fisher's
 - *iv*) Marshall-Edgeworth

	2	014	2015		
	Price (Shs)	Quantity (Kgs)	Price (Shs)	Quantity (Kgs)	
Maize	650	200	1350	300	
Sugar	950	80	1600	70	
Rice	1500	50	3200	80	

(12 marks)

QUESTION FIVE

- *a*) Briefly explain **FOUR** sources of secondary data.
- *b*) In the study of a city, the population density, in *people/hectare*, and the distance from the city centre, in *km*, was investigated by picking a number of sample areas with the following results.

Area	Α	В	С	D	E	F	G
Distance (km)	0.6	3.8	2.4	3.0	2.0	1.5	1.8
Population density (people/hectare)	50	22	14	20	33	47	25
©Technical University	of Mombas	a				Page 5	of 6

(8 marks)

Required:-

i)	Calculate the product moment correlation coefficient (<i>r</i>).	(10 marks)
ii)	Interpret the relationship between distance (<i>km</i>) and population density (<i>people/hectare</i>).	(2 marks)

©Technical University of Mombasa