

TECHNICAL UNIVERSITY OF MOMBASA

SCHOOL OF BUSINESS

DEPARTMENT OF MANAGEMENT SCIENCE

UNIVERSITY EXAMINATION FOR:

BACHELOR OF COMMERCE, BACHELOR OF BUSINESS

ADMINISTRATION

BMS 4203: ADVANCED BUSINESS STATISTICS

END OF SEMESTER EXAMINATION

SERIES: APRIL 2022

TIME:2HOURS

DATE: Apr2022

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

a) According to a survey conducted by Kenya Bureau of Statistics, the mean and standard deviation of salaries of employees in the insurance industry in Kenya are Ksh 60,000 and Ksh 5,000 respectively. Assume that the salaries of employees are normally distributed.

Required:

- i) What is the probability that the salary of an employee selected at random from the industry is less than Ksh 55,000? (2 marks)
- ii) What is the probability that the salary of an employee selected at random from the industry is greater than Ksh 70,000? (2marks).
- iii) What is the probability that the salary of an employee selected at random from the industry is between Ksh 50,000 and Ksh 75,000. (4 marks)

iv) What is the probability that a simple random sample of employees of size 25 drawn from the population will have a mean between Ksh 57,000 and Ksh 62000? (4 marks).

b) Arrivals to a bank automated teller machine are distributed according to a Poisson distribution with a mean equal to three per 15 minutes.

- i) Determine the probability that in a given 15-minute segment, no customers will arrive at the ATM. (2 marks)
- ii) Determine the probability that in a given 30-minute segment, no customers will arrive at the ATM. (2 marks)
- iii) What is the probability that fewer than three customers will arrive in a 15minute segment? (4marks)
- c) A population consists of three numbers 2, 4, and 6.

Required:

- i) Determine the mean of the population. (1 mark)
- ii) Find the standard deviation of the population. (2 marks)
- iii) List all possible samples of size two which can be drawn with replacement from the population. (3 marks)
- iv) Construct the sampling distribution of sample means. (3 marks)
- v) Determine the standard error of the sampling distribution of sample means. (1 mark)

Question TWO

- a) What is sampling distribution of sample means?
- b) A random sample of 40 television viewers was asked if they had watched the previous year's live coverage of Mashujaa day celebrations. The following data represent their responses.

No	No	No	Yes	No	No	No	Yes	No	Yes
No	No	No	Yes	No	No	No	No	Yes	No
Yes	No	No	No	Yes	No	No	No	No	No
No	No	No	No	No	No	No	No	No	No

i) What is the point estimate for the population proportion of viewers who indicated they watched the previous year's live coverage of Mashujaa day celebrations? (2 mark)

- ii) Compute a 95% confidence interval for the proportion of viewers in the sample who indicated they watched the previous year's live coverage of Mashujaa day celebrations. (6 marks)
- c) The director of manufacturing at a clothing factory needs to determine whether a new machine is producing a particular type of cloth according to the manufacturer's specifications, which indicate the cloth should have a mean breaking strength of 70 kilograms and a standard deviation of 3.5 kg. A sample of 49 pieces of cloth reveals a sample mean breaking strength of 69.1 kilograms.

Required:

©Technical University of Mombasa

(2 marks)

i)	State the null and alternative hypothesis.	(2 marks)
ii)	At the 0.05 level of significance, is there evidence that the machine is not meeting the	e
	manufacturer's specifications for mean breaking strength?	(8 marks)

Question THREE

a)	Distinguish	between a	point	estimate and	an interval	l estimate.	(4 marks)
----	-------------	-----------	-------	--------------	-------------	-------------	-----------

b) Discuss three properties of a good estimator.

c) The inspection division of the Mombasa County weights and measures department wants to estimate the actual amount of soft drink in 2-litre bottles at the local bottling plant of a large nationally known soft-drink company. The bottling plant has informed the inspection division that the population standard deviation for 2-litre bottles is 0.05 litre. A random sample of 100 2-litre bottles at this bottling plant indicates a sample mean of 1.99 litres.

(i) Construct a 95% confidence interval estimate of the population mean amount of soft drink in each bottle. (8 marks)

(ii) On the basis of your results, do you think that the purchasers of the soft drink have a right to complain to the soft drink company. (2 marks)

Question FOUR

a) More shoppers do their majority of grocery shopping on Saturday than any other day of the week. A researcher would like to establish whether the day of the week a person does majority of grocery shopping is dependent on age. He conducted a study that cross-classified grocery shopping by age and major shopping day. The following table contains the data.

Major channing day				
Major shopping day	Under 20	20 - 35	0ver 35	Total
Saturday	30	16	8	54
A day other than	22	25	19	66
Saturday				
Total	52	41	27	120

Required;

(i) State your hypotheses.(2 marks)(ii) Compute the expected values.(3 marks)(iii) Find the computed chi-square value.(3 marks)(iv) How many degrees of freedom are there?(1 mark)(v) Find the critical value of chi-square at $\alpha = 0.05$ (1 mark)(vi) Is there evidence of a significant difference among the age groups with respect to(2 marks)(a) major grocery shopping day?(use $\alpha = 0.05$)(2 marks)

(6 marks)

b) A random sample of 10 assembly line employees of a large manufacturing firm are evaluated by their peers and their supervisors as to congeniality and cooperativeness on the job. The following table shows the scores.

Employee	1	2	3	4	5	6	7	8	9	10
Peers (x)	90	83	60	95	84	68	93	55	79	78
Supervisor (y)	90	89	63	87	85	57	81	68	60	65

The firm's personnel director wishes to know whether he can conclude that the two measures are directly correlated.

Required:

i)Convert the original observations to ranks.(2 marks)ii) Compute the spearman's rank correlation coefficient.(4 marks)iii) Test the null hypothesis that the rankings are mutually independent against the
alternative that they are directly correlated. Let $\alpha = 0.05$ (2 marks)

Question FIVE

a) A continuous random variable is uniformly distributed between 100 and 150.

i) What is the probability a randomly selected value will be greater than 135? (2marks).

ii) What is the probability that a randomly selected value will be less than 120? (2 marks)

b) A hotel claims that 90% of its customers are very satisfied with its service. Answer the following questions based on a random sample of eight customers:

Required:

i) What is probability that exactly seven customers are very satisfied? (2 marks)
ii) What is probability that more than six customers are very satisfied? (4 marks
iii) Suppose that of the eight customers selected, four responded that they are very satisfied. What conclusion can be drawn about the hotel's claim? (2 marks)

c) Explain the following terms as used in statistics.

i) A statistic	(2 marks)
ii) A parameter	(2 marks)
iii) Type 1 error	(2 marks)
iv) Type II error	(2 marks)

Standard Normal Distribution Table

1	0	0.03	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0060	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.03599
0.1	0.0398	0.0438	0.0478	9.0517	0.0557	0.0596	0.0636	0.0679	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.09488	0.0967	0.1026	0.1064	0.1903	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.3480	0.1517
0.4	0.1554	0.3598	0.1628	0.1664	0.1700	0.1756	0.1772	0.1905	0.1644	0.1879
0.5	0.1915	0.0890	0.1965	0.2019	0.2054	0.2068	0.2123	0.2157	0.2190	0.2224
4.0	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2456	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2623	0.2852
0.8	0.2881	0.2990	6.2959	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3156	0.3212	0.3238	0.3264	0.3299	0.3315	8.3340	0.3365	(1.3389
1.0	0.3413	0.3436	0.5661	0.3485	0.3508	0.3831	0.3354	0.3377	0.3599	0.3621
1.1	0.3643	0.3648	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3960	0,3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4210	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.47844	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4454	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4534	0.4564	D.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.5	0.4641	0.4649	0.4656	0.4664	0.4671	0,4679	0.4686	0.4695	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4736	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	6.4778	0.4783	0.4758	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	11.4834	0.4838	0.4542	0.4546	0.4850	0.4854	0.4857
2.2	0.4561	0.4864	0.4958	0.4871	0.4675	0.4678	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4998	0.4903	0.4904	0.4906	0.4909	0,4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4952	0.49334	0.4836
2.5	0.4938	0.4940	0.4941	0.4943	8.4945	11.4946	0.4948	0,4949	0.4951	0.4952
2.6	0.4955	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4967	0,4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.6972	0.4973	0.4974
2.8	0.4974	0.0975	0.4976	0.4977	0.4977	0.4978	0.490%	0.4979	0.4980	6.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4965	0.4985	0.4986	0.4986
3.0	0.4967	0.4987	0.4987	0.4968	0,4985	0.4989	0.4989	0.49899	11.49993	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997

Dr. William L. Carlson, prepared using Minitab 16.

Table F	The t Distribution	307 220			THE STATE	1788 209 A
	Confidence intervals	80%	90%	95%	98%	99%
	One tail, α	0.10	0.05	0.025	0.01	0.005
d.f.	Two tails, a	0.20	0.10	0.05	0.02	0.01
1		3.078	6.314	12.706	31.821	63.657
2		1.886	2.920	4 301	6.065	00.007
3		1.638	2 153	3.187	4 541	5.841
4		1533	2.132	2.776	3 747	4.604
5		1.476	2.015	2.571	3 165	4.032
6		1.440	1943	7.647	5,595	3,302
7		1415	1 895	2 164	2.143	1.400
8		1 397	1 860	3.300	2,770	3.499
0		1.181	1.800	2.500	2.890	3.323
10		1 372	1.035	5.606	2.821	3.250
11		1361	1.916	3 201	2.704	3.109
12		1.365	1,720	2.201	2.716	3.106
13		1,350	1.784	6,179	2.081	3.055
14		1.3.30	1.771	2.109	2.650	3.012
15		1.542	1.701	2,145	2.024	2.977
16		1.341	1.753	2.131	2.602	2,947
10		1.337	1,740	2.120	2.583	2.921
10	La Carlos Cherry	1.533	1,740	2.110	2.567	2.898
18		1.330	1.734	2,101	2.552	2.878
19		1.328	1.729	2.093	2.539	2.861
20		1.325	1.725	2.086	2.528	2.845
21		1.323	1.721	2.080	2.518	2.831
- 12		1.321	1.717	2.074	2.508	2.819
23		1.319	1.734	2.069	2.500	2.807
24		1.318	1.711	2.064	2.492	2,797
25		1.316	1.708	2.060	2,485	2.787
26	LCC/UPC EPON	1.315	1.506	2.056	2.479	2.779
27		1.314	1.703	2.052	2,473	2.771
28		1.313	1.701	2.048	2.467	2.763
29		1.311	1.699	2.045	2.462	2.756
30		1.310	1.697	2.042	2.457	2.750
32		1.309	1.694	2.037	2.440	2,738
34		1.307	1.691	2.032	2.441	2 718
36	and the second second	1.306	1.688	2.028	2.434	2.714
38		1,304	1.686	2.024	2 429	2 712
40		1.303	1.684	2.021	2.421	2.264
45	100 100 100 100 100	1.301	1.679	2.014	2.412	3,690
50		1.299	1.676	2 009	1 401	3,679
55		1.207	1.673	2.004	0.304	2.070
60	1	1.296	1.671	2.004	2.390	2.008
65	1.	1.705	1,660	1.007	2.390	2,000
70		1.204	1.687	1.997	4.383	2,004
75	and the second	1.203	1.007	1.000	2.001	2.048
30		1 293	1.003	1.994	2.377	2.643
90		1.201	1,004	1.990	2.374	2.639
100		1.300	1.002	1.98/	2,368	2.632
500		1.290	1.660	1.984	2.364	2.626
1000		1.285	1.048	1.965	2.334	2.586
1900		1.282	1.640	1,962	2.330	2,581
(2).00		1.282	1.645	1.960	2.326	2.576

"This value has been rounded to 1.28 in the textbook.

^bThis volue has been rounded to 1.65 in the nextbook.

This value has been rounded to 2.33 in the textbook.

"This value has been rounded to 2.58 in the textbook.

Source: Adapted from W. H. Beyer, Hawdback of Tables for Probability and Statistics, 2nd ed., CRC Press, Boce Rateo, Fla., 1986. Reprinted with permission.

Table G	The Chi-Squ	are Distrib	ution							
Derrees of						a				
freedom	0,995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0,01	0.005
1	-	-	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7,378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12,833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10,645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18,475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2,700	3.325	4.168	14,684	16,919	19.023	21,666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
- 11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18,549	21.026	23.337	26.217	28.299
13	3.565	4.107	5.009	5,892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.875	4,660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32,801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34,805	37,156
19	6.844	7.633	8.907	10.117	11.651	27,204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28,412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40,289	42.796
23	9.262	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34,382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45,642	48.290
27	11,808	12.879	14.573	16.151	18,114	36.741	40.113	43.194	46,953	49.645
28	12.461	13,565	15.308	16.928	18.939	37.916	41.337	44,461	48,278	50.993
29	13.121	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14,954	16.791	18,493	20.599	40,256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46,459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48,758	51.739	55.329	\$5.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57,153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
98	59.196	61.754	65.647	69.126	73.291	107,565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118,498	124.342	129.561	135.807	140.169

Source: Denald B. Overs, Handbool of Statistics Tables. The Chi-Square Distribution Table, C 1962 by Addison-Wesley Publishing Company, Inc. Copyright summal C 1990. Reprinted by paraissism of Process Education, Inc.

Table L Critical Values for the Rank Correlation Coefficient

n	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.02$	$\alpha = 0.01$
5	0.900			-
6	0.829	0.886	0.943	_
7	0.714	0.786	0.893	0.929
8	0.643	0.738	0.833	0.881
9	0.600	0.700	0.783	0.833
10	0.564	0.648	0.745	0.794
11	0.536	0.618	0.709	0.818
12	0.497	0.591	0.703	0.780
13	0.475	0.566	0.673	0.745
14	0.457	0.545	0.646	0.716
15	0.441	0.525	0.623	0.689
16	0.425	0.507	0.601	0.666
17	0.412	0.490	0.582	0.645
18	0.399	0.476	0.564	0.625
19	0.388	0.462	0.549	0.608
20	0.377	0.450	0.534	0.591
21	0.368	0,438	0.521	0.576
22	0.359	0.428	0.508	0.562
23	0.351	0.418	0.496	0.549
24	0.343	0.409	0.485	0.537
25	0.336	0.400	0.475	0.526
26	0.329	0.392	0.465	0.515
27	0.323	0.385	0.456	0.505
28	0.317	0.377	0.488	0.496
29	0.311	0.370	0.440	0.487
30	0.305	0.364	0.432	0.478

Reject H_0 : $\rho = 0$ if the absolute value of r_s is greater than the value given in the table.

Source: From N. L. Johnson and F. C. Leone, Statistical and Experimental Design, vol. I (1964), p. 412. Reprinted with permission from the Institute of Mathematical Statistics.