

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

TIME: 3 HOURS

DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of five questions. Attempt QUESTION ONE and any other TWO. **Do not write on the question paper.**

Question ONE

- a. Define a uniform most powerful test (4 marks)
- b. A manufacturer is interested in the output voltage of a power supply used in a PC. Output voltage is assumed to be normally distributed, with standard deviation 0.25 Volts, and the manufacturer wishes to test H_0 ; $\mu = 5$ Volts against H_1 ; $\mu \neq 5$ Volts, using 8 units.
 - i. The acceptance region is $4.85 \le \overline{x} \le 5.15$ Find the size of the test. (4marks)
 - ii. Find the power of the test for detecting a true mean output voltage of 5.1 Volts.(5marks)
- c. Let $x_1, x_2, ..., x_n$ be a random sample from $f(x; \theta) = \theta e^{-\theta x}$ where $\theta = \theta_0$ and $\theta = \theta_1$ $(\theta_1 > \theta_0)$. Obtain the uniformly most powerful test for $H_0: \theta = \theta_0$ against $H_0: \theta < \theta_1$. (7marks)
- d. Define the power function of a test
- e. The capacities of brand 1 and brand 2 window 2 window air conditioners are rated the same. Capacities of random samples of six units of each brand were determined. The sample data is given below. Perform a hypothesis test at the 5% level of significance to determine whether mean consumptions for the brands differ.

Brand 1	6.1	6.4	5.6	6.2	6.4	5.9
Brand 2	4.8	5.2	5.3	5.1	5	5.2

(4marks)

Question TWO

- a. Let $x_1, x_2, ..., x_n$ be iid normally distributed random variable with mean μ and known variance σ^2 . Develop a likelihood ratio test for testing the hypothesis $H_0: \mu = \mu_0$ against $H_0: \mu = \mu_1$ at 5% level of significance (10 marks)
- **b.** Let $x_1, x_2, ..., x_n$ be a random sample of size 25 from a normal distribution with unknown mean μ and standard deviation 1. Consider the hypothesis $H_0: \mu = 2$ against $H_0: \mu = 4$ at 5% obtain a test that maximizes the power when $\mu = 4$ (10marks)

Question THREE

- a. Define an unbiased test
- b. Consider $x_1, x_2, ..., x_n$ of iid continuous random variables with mean μ and known variance σ^2 . We wish to test the hypothesis $H_0: \mu = \mu_0$ against $H_0: \mu < \mu_1$. Show that the test is unbiased (5marks)

(5 marks)

c. Prove that every most powerful or uniformly most powerful criteria region is necessarily unbiased (10marks)

Question FOUR

- a. Show that if sufficient test exists there exists a most powerful critical region (10marks)
- b. Random samples of 500 men and 500 women have been selected to determine whether the proportion of women favoring a political candidate is greater than the proportion of men favoring the candidate. Carry out a hypothesis test at the 1% level if 40 women and 20 men favor the candidate (10marks)

Question FIVE

- a. Define the likelihood ratio test (5marks)
- b. Let $x_{i1}, x_{i2}, ..., x_{in}$ be independently identically distributed $N(\mu_i, \sigma_i^2)$ random variables for i = 1, 2, ..., k. Find a size α LRT test for $H_0; \mu_i = \mu_j$ against $H_1; \mu_i \neq \mu_j$ (15 marks)