FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:

MASTER OF SCIENCE IN APPLIED STATISTICS

AMA 5109: STOCHASTIC PROCESSES

END OF SEMESTER EXAMINATION

SERIES: AUGUST TIME: 3 HOURS

DATE: AUGUST 2019

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO

 FROM THE REMAINING QUESTIONS
QUESTION ONE [30 MARKS]

a) Define the following terms as used with Markov Chains
i) Periodic State
[1 mark]
ii) Ergodic State
iii) Absorbing state
[1 mark]
b) Let $p_{j k}^{n}$ be the probability of moving from E_{j} to E_{k} in n steps regardless of the number of entrances into E_{k} prior to n and $f_{j k}^{n}$ be the probability of entering E_{k} from E_{j} in n steps for the first time, show that there exits a relationship between these probabilities given by $P(s)=\frac{1}{1-F(s)}$
c) Classify the states for this infinite Markov Chain

$$
\left[\begin{array}{ccccccc}
& E_{1} & E_{2} & E_{3} & E_{4} & E_{5} & \ldots \\
E_{1} & \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & \ldots \\
E_{2} & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 & \ldots \\
E_{3} & \frac{1}{4} & 0 & 0 & \frac{3}{4} & 0 & \ldots \\
E_{4} & \frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & \ldots \\
. & \cdot & \cdot & \cdot & . & \cdot & . \\
. & . & . & . & . & . & .
\end{array}\right]
$$

d) Let $S=\sum_{i=1}^{n} X_{i}$ denote the waiting time until the $n^{\text {th }}$ event has occurred in a Poisson process, where the X_{i} are the interarrival times. Show that
$S \sim \operatorname{gamma}(n, \lambda)$
[10 marks]

QUESTION TWO

a) Suppose that $p_{j}=p_{r}(z=j)$ forms a geometric series $p_{j}=b r^{j-1} \mathrm{j}=1,2, \ldots$ where $0<\mathrm{r}<1$ and $0<\mathrm{b}<1$-r while $p_{0}=1-\sum_{j=1}^{\infty} p_{j}$
i) Find the corresponding p.g.f and the mean
ii) Show that the equation $s=p(s)$ has its only positive roots 1 and

$$
\begin{equation*}
s=\frac{1-(r+b)}{r(1-r)} \tag{5marks}
\end{equation*}
$$

b) Consider a series of Bernouli trials with probability of success p. Suppose that X denotes the number of failures following the first success and Y the number of failures following the first success and preceding the second success
i) Using the bivariate p.g.f obtain Variance of X and the Variance of Y [6 marks]
ii) Show that the X and Y are independent

QUESTION THREE[20 MARKS]

Consider a process whose difference equation is given by
$p_{n}^{\prime}(t)=-\lambda p_{n}(t)+\lambda p_{n-1}(t) \quad n \geq 1 \quad$ and $p_{o}^{\prime}(t)=-\lambda p_{o}(t) \quad n=0$. Suppose the initial
condition are $p_{n}(0)=1$ for $\mathrm{n}=0$ and 0 otherwise,
a) Obtain the probability generating function of this process
b) What is the probability that the population is of size n at time t i.e $p_{n}(t)$
c) Find the expected value and the variance of n . i.e $p_{n}(t)$

QUESTION FOUR [20 MARKS]

a) Using the probability generating function find the mean and variance of a distribution defined by $p_{r}\{X=k\}=p q^{k}$ for $\mathrm{p}+\mathrm{q}=1$ and $\mathrm{k}=0,1,2, \ldots$
[6 marks]
b) A certain kind of nuclear particle splits into 0,1 or 2 particles with probability $\frac{1}{4}, \frac{1}{2}$ and $\frac{1}{4}$ respectively and then dies. The individual particles act independently of each other. Given a particle, let z_{1}, z_{2} and z_{3} denote the number of particles in the first, second and third generations. Find (i)
$p_{r}\left[z_{2}>0\right]$
(ii) $p_{r}\left[z_{3}=0\right]$
[7 marks]
c) In a certain process, the probability of n offspring from one ancestor is geometric with probability p
i) Find the range of values for which the process will die out with probability one.
ii) For p outside this range, find the probability of extinction [2 marks]
iii) If p is chosen so that the probability of a process never dies out is 0.999, what is the probability that an individual will have no offspring
[2 marks]

QUESTION FIVE [20 MARKS]

a) Let $X_{i}, i=1,2, \ldots$ be identically and independently distributed random variables with $\mathrm{P}\left\{\mathrm{X}_{\mathrm{i}}=\mathrm{k}\right\}=\mathrm{p}_{\mathrm{k}}$ and p.g.f , $p(s)=\sum_{k} p_{k} S^{k}$ for $i=1,2, \ldots$. Let $S_{N}=X_{1}+X_{2}+\ldots+X_{N}$ where N is a random variable independent of the $\mathrm{X}_{\mathrm{i}}{ }^{\text {s }}$. Let the distribution of N be given by $\operatorname{Pr}\{N=n\}=g_{n}$ and the p.g.f of N be $G(s)=\sum_{n} g_{n} S^{n}$, Show that the p.g.f $\mathrm{H}(\mathrm{s})$ of S_{N} is given by $H(s)=\sum_{j} p_{r}\left\{S_{N}=j\right\} S^{j}=G[p(s)]$
[10 marks]
b) Let X have a p.d.f $\mathrm{P}\{\mathrm{X}=\mathrm{k}\}=\mathrm{p}_{\mathrm{k}}, k=0,1,2, \ldots$ with p.g.f $p(s)=\sum_{k=0}^{\infty} p_{k} S^{k}$

$$
\begin{aligned}
& \text { and } \phi(s)=\sum_{k=0}^{\infty} q_{k} S^{k} \text {. Show that } \phi(s)=\frac{1-p(s)}{1-s} \text { if } q_{k}=p_{r}\{X>k\} \text { and } \\
& \phi(s)=\frac{p(s)}{1-s} \text { if } q_{k}=p_{r}\{X \leq k\} \text { for } \mathrm{k}=0,1,2, \ldots
\end{aligned}
$$

