

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:

MASTER OF SCIENCE IN APPLIED STATISTICS AMA 5108: APPLIED TIME SERIES

END OF SEMESTER EXAMINATION

SERIES: AUGUST **TIME: 3** HOURS

DATE: AUGUST 2019

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO FROM THE REMAINING QUESTIONS

QUESTION ONE [30 MARKS]

- a) Define a positive definite function for $x \in X$ [2marks]
- b) Consider the process given by $X_{t} = -0.2X_{t-1} + 0.48X_{t-2} + e_{t}$.
 - i) Is the process stationary

[5 marks]

ii) Find its A.C.F [7 marks]

- c) Let e_1 and e_2 be independent random variables with mean 0 and variance $Var(e_1) = Var(e_2) = \sigma^2$. Let λ_0 be a constant $0 < \lambda_0 < \pi$, and define Y_t by $Y_t = e_1 \cos(\lambda_0 t) + e_t \sin(\lambda_0 t)$. Show that Y_t is stationary and compute the auto covariance and autocorrelation functions. [6 marks]
- d) Obtain the autocorrelation function of an AR(2) process whose auxiliary equation has complex roots [10 marks]

QUESTION TWO [20 MARKS]

- a) How would you distinguish between MA(1) and AR (1) processes [2 marks]
- b) Show that the covariance function of the stationery time series $\{X_t\}$ is positive definite [4 marks]
- c) Let $\{X_t\}$ be a moving average process of order 2 given by $X_t = e_t + \theta e_{t-2}$ where $\{e_t\}$ is WN (0, 1). Compute the variance of the sample mean $\frac{X_1 + X_2 + X_3 + X_4}{4}$ when $\theta = 0.8$ and when
- d) Let $=X_t=e^{i\lambda t}=\cos\lambda t+i\sin\lambda t$. Let $a_j=\frac{1}{2m+1}$, $\forall j\in[-m,m]$. Show that

$$Y_t = \sum_{i=-m}^{m} a_i X_{t-j}$$
 can be expressed as $Y_t = \frac{1}{2m+1} \frac{\sin(\frac{2m+1}{2})\lambda}{\sin(\frac{\lambda}{2})} e^{i\lambda t}$ [8marks]

QUESTION THREE [20 MARKS]

- a) Consider the MA (2) process $Y_t = \mu + e_t 1.3e_{t-1} + 0.6e_{t-2}$ where e_t are white noise process with $\sigma^2 = 1.8$. Find the variance, autocovariance function and the ACF of Y_t [14 marks]
- b) Suppose that Y_t is a stationary process. Show that the process of the first differences $\{W_t\}$ given by $W_t = Y_t Y_{t-1}$ is also a stationary process [6 marks]

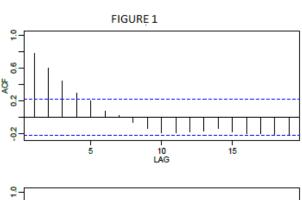
QUESTION FOUR [20 MARKS]

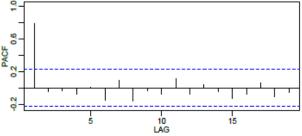
Consider the AR(1) process $X_{_t} = \alpha X_{_{t-1}} + e_{_t}$ for $\mid \alpha \mid < 1$.

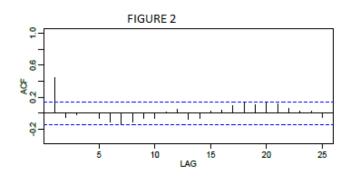
- a) By successive replacements of the X_t 's in the process show that the process converges to an infinite moving average process of white noise. [11marks]
- b) Show that the autocorrelation function for this process is given by $r(h) = \alpha^h$ [9 marks]

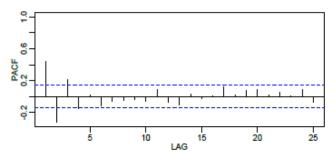
QUESTION FIVE [20 MARKS]

a) Figure 1 and 2 below shows the ACF and PACF of some time series models. Identify the models.
 Give reasons for your answer. [6 marks]









b) Explain what the following commands will achieve in the analysis of time series [6 marks]

plot(diff(rw))

acf(diff(rw))

- (c) Show that for an MA(1) process, the lag 1 autocorrelation $\rho(1)$ satisfies $-\frac{1}{2} \leq \rho(1) \leq \frac{1}{2}$ [4 marks]
- d) For the ARMA(1,2) model $Y(t)=0.8Y_{t-1}+e_t+0.7e_{t-1}+0.6e_{t-2}$ show that

i)
$$\rho(k) = 0.8\rho(k-1), k \ge 3$$

ii)
$$\rho(2) = 0.8\rho(1) + 0.6 \frac{\sigma_e^2}{\gamma_o}$$
 [4 marks]