TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:
MASTER OF SCIENCE IN APPLIED STATISTICS
AMA 5108: APPLIED TIME SERIES
END OF SEMESTER EXAMINATION
SERIES: August TIME: 3 hours
DATE: AUGUST 2019

INSTRUCTIONS:

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS FROM THE REMAINING QUESTIONS

QUESTION ONE [30 MARKS]
a) How would you distinguish between $\mathrm{MA}(1)$ and $\mathrm{AR}(1)$ processes [4 marks]
b) Consider the MA (2) process $Y_{t}=\mu+e_{t}-1.3 e_{t-1}+0.6 e_{t-2}$ where e_{t} are white noise process with mean zero and $\sigma^{2}=1.8$. Find the variance, auto covariance function and the ACF of Y_{t} [6 marks]
c) Discuss the different components of a time series [8 marks]
i. Define a positive definite function for $x \in X$
ii. Show that the covariance function of the stationery time series $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ is positive definite
d) Let $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ be a moving average process of order 2 given by $X_{t}=e_{t}+\theta e_{t-2}$ where
$\left\{e_{t}\right\}$ is WN $(0,1)$. Compute the variance of the sample mean $\frac{X_{1}+X_{2}+X_{3}+X_{4}}{4}$ when $\theta=0.8$ and when
[6marks]

QUESTION TWO [20 MARKS]

Consider the $\mathrm{AR}(1)$ process $X_{t}=\alpha X_{t-1}+e_{t}$ for $|\alpha|<1$.
a) By successive replacements of the X_{t} 's in the process show that the process converges to an infinite moving average process of white noise. Hence show that the autocorrelation function for this process is given by $r(h)=\alpha^{h} \quad$ [10 marks]
b) Let $X_{t}=\frac{1}{4} X_{t-1}+e_{t}$. Obtain the spectral density for this process [10 marks]

QUESTION THREE [20 MARKS]

a) Consider the AR (2) process given by $X_{t}=\alpha_{1} X_{t-1}+\alpha_{2} X_{t-2}+e_{t}$. By obtaining the corresponding Yule walker equations, show that the autocorrelation function when we have distinct roots is given by $\rho(h)=\left(\frac{\alpha_{1}-\pi_{2}\left(1-\alpha_{2}\right)}{\left(1-\alpha_{2}\right)\left(\pi_{1}-\pi_{2}\right.}\right) \pi_{1}^{h}+\left(\frac{\left.\pi_{1}-\alpha_{1}-\alpha_{2} \pi_{1}\right)}{\left(1-\alpha_{2}\right)\left(\pi_{1}-\pi_{2}\right.}\right) \pi_{2}^{h} \quad$ [9 marks]
b) Consider the process given by $X_{t}=X_{t-1}-\frac{5}{16} X_{t-2}+e_{t}$
i) Is the process stationary
[4 marks]
ii) Find its A.C.F

QUESTION FOUR [20 MARKS]

Consider the $2 m+1$ point moving average linear filter given $Y_{t}=\frac{1}{2 m+1} \sum_{j=-\infty}^{\infty} X_{t-j}$. Let $X_{t}=e^{i \lambda t}=\cos \lambda t+i \sin \lambda t$
a) Show that Y_{t} can be written as $Y_{t}=\frac{1}{2 m+1} \frac{\sin \left(\frac{2 m+1}{2}\right) \lambda \exp (i \lambda t)}{\sin (\lambda / 2)} \quad$ [10 marks]
b) What will be the effect on the trend when
i. $\lambda=0$
ii. $\quad \lambda \neq 0$

QUESTION FIVE [20 MARKS]

a) Consider the following data set

t	1	2	3	4	5	6	7	8	9	10
$\mathrm{X}(\mathrm{t})$	97	110	121	117	79	140	75	127	90	119

i) Find the mean and the sample variance of this process
[4 marks]
ii) Find the autocorrelation at lag 1 and Lag 2
[8 marks]
b) Let a time series be given by $X_{t}=X_{t-1}+e_{t}$ where e_{t} is white noise with mean μ and variance σ^{2}. Let $X_{0}=0$. Show that X_{t} is non-stationary
c) Show that the Autocorrelation function of ARMA $(1,1)$ model given by $X_{t}=\alpha X_{t-1}+e_{t}+$ $\beta e_{t-1} \quad$ is given by $\rho(1)=\frac{(1+\alpha \beta)(\alpha+\beta)}{1+\beta^{2}+2 \alpha \beta}$
[5 marks]

