

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

MASTERS OF SCIENCE IN CHEMISTRY

ACH 5107: ADVANCED ELECTROCHEMISTRY AND CHEMICAL KINETICS

SPECIAL/ SUPPLEMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 3HOURS

DATE: Pick DateSep2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **SIX**Question(s). Attemptany FOUR questions. **Do not write on the question paper.**

Question ONE

- a) Calculate the molecular weight of sulfur if 35.5 grams of sulfur dissolve in 100.0 grams of CS₂ to produce a solution that has a boiling point of 49.48°C.
 (6 marks)
- b) At 25°C, the specific volume of saturated liquid is $1.003 \text{ cm}^3/\text{g}$ and the volume of saturated vapor is 43400 cm³/g. What is the volume of a mixture with vapor fraction, x=0.3 (8 marks)
- c) i) Calculate the temperature of 20.0 mole of helium in a 10.0 litre cylinder at 120 atmosphere pressure. (6 marks)

ii) Compare this value with the temperature calculated from the ideal gas equation. [Data - Van der Waals constants for helium: $a = 0.0341 L^2$ at mol⁻²; $b = 0.0237 L mol^{-1}$] (5 marks)

Question TWO

a)	Differentiate between mean activity and mean activity coefficient	(4 marks)
b)	Discuss the colligative properties	(8 marks)
c)	Calculate the solubility of $Pb(IO_3)_2$ in a solution of 0.020 M Mg(NO ₃) ₂ .	(7 marks)

d) The vapor pressure of 1-propanol is 10.0 torr at 14.7 °C. Calculate the vapor pressure at 52.8 °C, if the heat of vaporization of 1-propanol = 47.2 kJ/mol
 (6 marks)

Question THREE

a) Draw a fully labelled phase diagram of water

- (5 marks)
- **b**) Find the formula of the compound from the phase diagram shown below and label it
- (15 marks)

c) In an experiment carried out, hydrogen iodide was found to be 22.3% dissociated at 730.8°K. Calculate $_{Kc}$ for 2 HI(g) \rightarrow H2(g) + I2(g) (5 marks)

Question FOUR

a) b)	The latent heat of vaporization of water at 100°C is 539 kcal/kg. Calculate the boiling poi at 600 mm Hg. The value of the universal gas constant is 1.98 cal/mole °K. i) Define colloids and	nt of water (6 marks) (4 marks)
	ii) Describe the four types of colloids stating their dispersed phase and dispersing mediur	n (8 marks)
c)	Explain the Tyndall effect	(7 marks)
Quest	ion FIVE	
a)	i) Differentiate between surface and interface	(10 marks)
ii)	Discuss three examples applications of surfaces	(9 marks)
12 (C	• Calculate osmotic pressure of 5% solution of cane sugar (sucrose) at 15°C. m = mol. mass ${}_{12}H_{22}O_{11}$) = 342	s of sucrose (6 marks)

Question SIX

- a) Explain the Gibbs phase rule (4 marks)
 b) Using the Gibbs phase rule calculate the degrees of freedom of water in all the three phases (6 marks)
- c) Calculate *I* for a solution that is 0.3 molal in KCl and 0.5 molal in $K_2Cr_2O_7$. (7 marks)
- d) Calculate the standard entropy of formation of H₂O (1), its standard Gibb's energy of formation, and the equilibrium constant *K* for the reaction.
 (8 marks)

 $H_2(g) + \frac{1}{2}O_2(g) -> H_2O(l)$