

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES UNIVERSITY EXAMINATION FOR:

MASTERS OF SCIENCE IN CHEMISTRY

ACH 5103: ADVANCED ELECTROCHEMISTRY AND CHEMICAL KINETICS

SPECIAL/ SUPPLEMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 3HOURS

DATE: Sep2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of SIXQuestion(s). Attemptany FOUR questions.

Do not write on the question paper.

©Technical University of Mombasa

Question ONE

Differentiate between:	a) Stern and shear plane	(5 marks)
	b) Uniform and localized corrosion	(4 marks)
	c) Activation and Concentration Polarization	(6 marks)
	d) Rechargeable and Non-rechargeable cells	(4 marks)
	e) Diffusion and activation controlled	(6 marks)
Question TWO		
a) Compare and contrast between faradaic and non-faradaic processes		(6 marks)
b) List the <u>five</u> variables to be considered in faradaic processes		(10 mark)
c) Discuss the <u>three</u> mass transport processes		(6 marks)
d) Calculate the EMF of the cell using the Nernst equation		(3 marks)

Page **1** of **3**

Question THREE

a) Describe the **three** basic types of reaction step in a chain polymerization

(6 marks)

b) Calculate the activation energy if the pre-exponential factor is 15 M⁻¹s⁻¹, rate constant is 12M⁻¹s⁻¹ and it is at 22K (6 marks)

c) i) Discuss how enzymes lowers the activation energy

(4 marks)

ii) Describe the **three** types of enzyme inhibition with examples

(9 marks)

Question FOUR

a) Use the Debye-Hückel equation to calculate the activity coefficient for Hg2+ in a solution that has an ionic strength of 0.085. Use 0.5 nm for the effective diameter of the ion. (5 marks)

b) What is the ionic strength of a solution that is 0.05 M in KNO₃ and 0.1 M in Na₂SO₄?

(4 marks)

c) Assume the half-life of the first order decay of radioactive isotope takes about 1 year (365 days). How long will it take the radioactivity of that isotope to decay by 60%? (6 marks)

d) State **five** postulates of collision theory

(10 marks)

Question FIVE

a) Differentiate between flash photolysis and the pressure jump

(10 marks)

b) Discuss the **two** main theories to explain catalysis.

(8 marks)

b) Use the Arrhenius equation to sketch an Arrhenius graph

(7 marks)

Question SIX

a) Calculate the equilibrium constant, K, for the reaction $Sn_{(s)}|Sn^{2+}||Ag^+|Ag_{(s)}|$ at $25^{\circ}C$.

(6 marks)

b) The key step in the industrial production of sulfuric acid is the reaction of SO₂ with O₂ to produce SO₃.

$$2SO_2(g)+O_2(g)\rightarrow 2SO_3(g)$$

Write expressions for the reaction rate in terms of the rate of change of the concentration of each species (3 marks)

c) A voltaic cell is constructed that uses the following reaction $Ni + 2Ag^+ = Ni^{2+} + 2Ag$.

i) Write the half reactions & indicate the anodic or cathodic reactions.

(4 marks)

©Technical University of Mombasa

Page 2 of 3

ii) Calculate E^ocell (6 marks)

iii) State whether the reaction is spontaneous. Given: E^{o} (Ni²⁺/Ni) = -0.28V, Eo (Ag⁺/Ag) = +0.80V (6 marks)