

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

MSC IN BIOTECHNOLOGY

ABT 5106: ADVANCED BIOINFORMATICS

SPECIAL/ SUPPLEMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 3 HOURS

DATE: SEP 2018

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

This paper consists of **SIX** questions, each **25 marks**. Attempt any FOUR questions Choose instruction.

Do not write on the question paper.

Question ONE (25 marks)

a. Outline the limitations of bioinformatics. 8 marks

b. Explain the application of bioinformatics in the following fields;

i. Microbial genome applications 5 marks

ii. Comparative Studies 5 marks

iii. Health and Drug discovery 7 marks

Question TWO (25 marks)

a. Outline the factor to consider when designing primers. 8 marks

b. Describe any FIVE bioinformatic tools you would use to design primers. 10 marks

c. Distinguish between unigene and locus link.

7 marks

Question THREE (25 marks)

Explain the three primary nucleotide sequence databases.

25 marks

Question FOUR (25 marks)

a. Use the following substitution matrices to solve the following questions

${\bf BLOSUM~62}$	PAM250
A R N D C Q E G H I L K M F P S T W Y V A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 0 -2 -3 -2 1 0 -4 -2 -3 D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 1 1 -2 -2 -1 Q -1 1 0 0 0 -3 5 2 -2 0 0 -3 -2 1 0 0 -3 -1 0 -1 -2 -1 -2 E -1 0 0 2 -4 2 5 -2 0 0 -3 -2 1 0 0 -3 -1 0 0 -1 -3 -2 -2 G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 -3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -2 -1 2 -2 2 -3 I -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 1 1 0 -3 -2 -1 -3 -1 1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 M -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 1 1 F -2 -3 -3 -3 -3 -3 -3 -3 -3 -1 0 0 -1 -2 -3 -2 1 2 -4 7 -1 -1 -1 -1 -1 F -2 -2 -1 -3 -1 0 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 U -3 -3 -4 -4 -2 -2 -3 -3 -2 -2 -3 -1 1 -2 -1 1 5 -2 -2 U -3 -3 -4 -4 -2 -2 -3 -3 -2 -2 -3 -1 1 -2 -1 1 5 -2 -2 U -3 -3 -4 -4 -2 -2 -3 -3 -2 -2 -3 -1 1 -1 -4 -3 -2 11 2 -3	A R N D C Q E G H I L K M F P S T W Y V A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 1 -6 -3 0 R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 0 -1 2 -4 -2 N 0 0 2 2 -4 1 1 0 2 -2 -3 1 1 -2 -3 0 1 0 -4 -2 -2 D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 0 -3 -6 -1 0 0 -7 -4 -2 C -2 -4 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 C 0 1 1 2 -5 4 2 -1 3 -2 -2 1 1 -1 -5 0 -1 -1 -5 0 -1 -1 -5 -4 -2 E 0 -1 1 3 -5 2 4 0 1 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 C 1 -3 0 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -5 -1 H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2 -1 4 L -2 -3 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 K -1 3 1 0 -5 1 0 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2 F -3 -4 -3 -5 -1 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2 F -3 -4 -3 -6 -4 -5 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1 P 1 0 0 0 -1 -3 0 -1 0 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 0 -6 -5 -1 S 1 0 1 0 0 -1 0 1 1 -1 -3 0 -2 -3 1 2 1 2 -2 -3 -1 0 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4	Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2 V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Given the following pairs of sequences below;

- i. KYWSAVYA
- ii. KKAWVDVA
- i. DWSAEVKK
- ii. AWSADVKY

Calculate similarity scores between these sequences using:

i.	Identity matrix (assume match = 2 , and mismatch = 1)	4 marks
ii.	PAM250 matrix	4 marks

iii. BLOSUM 62 matrix 4 marks

b. Describe the needleman-Wunsch algorithm 10 marks

c. Distinguish between an identifier and accession code 3 marks

Question FIVE (25 marks)

a. Use the Standard Code for Information Interchange table below to solve the following.

	30	40	50	60	70	80	90	100	110	120
0		(2	<	F	P	Z	d	n	x
1)	3	=	G	Q	[e	O	y
2		*	4	>	H	R	\	f	p	Z
3	!	+	5	?	I	S]	g	q	{
4	**	,	6	@	J	T	^	h	r	ĺ
5	#	-	7	A	K	U	_	i	S	}
6	\$		8	В	L	V		j	t	~
7	%	/	9	\mathbf{C}	M	W	a	k	u	DEL
8	&	0	:	D	N	X	b	1	\mathbf{v}	
9	,	1	;	E	O	Y	c	m	w	

Given characters 'k' and 'Y'

Calculate in each case the corresponding Phred quality score based on

i. The fastq-sanger format.

6 marks

ii. The Solexa/Illumina read format.

6 marks

b. Describe the tBLASTn bioinfomatic tool

7 marks

c. Using an illustration, describe the position specific iterative-BLAST (PSI-BLAST) approach.

Question SIX (25 marks)

a. Distinguish between MEGABLAST and BLASTn bioinformatic tools.

6 marks

b. Contrast Parsimony and Maximum likelihood tree building algorithms.

5 marks

c. Distinguish between ENZYME and REBASA databases.

14 marks