

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER SCIENCE

ACH 4108 : CHEMISTRY

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: Pick Date Sep 2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Answer question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Assign oxidation numbers to the underlined elements in the following compounds;

	(i)	H3 <u>P</u> O4	(ii)	$\underline{Pt}Cl_6^{2-}$		(2 marks)
(b)	Give	any TWO failu	res of B	ohr's theory of the structure of the H atom.		(2 marks)
(c)	0.65 g of a Na ₂ CO ₃ solution neutralises 25 ml of a HCl solution.					
	(i) Write a balanced equation of the neutralisation reaction					(1 mark)
	(ii) C	alculate the cor	ncentrat	ion of the HCl solution.		(3 marks)
	(H = 1	1, C = 12, O = 1	l 6, Na =	= 23, Cl = 35.5)		
(d)	Using	appropriate rea	action e	quations, show why Al ₂ O ₃ is an amphoteric oxide		(4 marks)
(e)	For an	n electronic trar	nsition f	From the $n = 5$ to $n = 2$ energy levels in a hydrogen	ı atom;	
				he emitted photon		(3 marks)
©Technical University of Mombasa Page 1 of 3					3	

	(ii) Calculate the wave number of the emitted photon ($R_H = 2.18 \times 10^{-18} \text{ J}$; $C = 2.99 \times 10^9 \text{ ms}^{-1}$; $h = 6.63 \times 10^{-34} \text{ Js}$).	(3 marks)	
(f)	Define the following terms,		
	(i) Dative covalent bond	(1 mark)	
	(ii) Hydrogen bond	(1 mark)	
(g)	Draw a Lewis diagram for NO ₂ ⁻ , showing resonance structures and formal charges	(3 marks)	
(h)	Provide TWO characteristics of the H atom as a Group I and Group II element of the Periodic table.	(2 marks)	
(i)	(i) Differentiate the terms electron affinity and electronegativity	(2 marks)	
	(ii) Provide guidelines for the application of electronegativity in predicting the type of bonding (3 mar		

Question TWO

(a)	Provide unique quantum numbers for the valence electrons in the B (Z=5) atom.		
(b)	Write electron configurations for the following ionic species,		
	(i) $P^{-3}(Z=15)$ (ii) $Cr^{2+}(Z=24)$	(2 marks)	
(c)	Explain how water can be purified by ion exchange.	(8 marks)	
(d)	Calculate the pH of a 1.5 x 10^{-3} M solution of HCN, given K _a = 4.9 x 10^{-10} .	(7 marks)	

Question THREE

(a)	H ⁻¹ and Li ⁺ are isoelectronic. Explain the difference in radii of the two species.	(3 marks)
(b)	The 1 st and 2 nd Ionisation energies of Na are 495.9 and 4,560 kJ mol ⁻¹ , and those of Mg are 738.1 and 1,450 kJ mol ⁻¹ , respectively. Explain the differences in the ionisation energies.	(8 marks)
(c)	Two atoms have electron configurations $1s^2 2s^2$ and $1s^2 2s^2 2p^1$. The 1^{st} ionisation energies of the two atoms are 801 and 899 kJ mol ⁻¹ . Match each of the ionisation energies with the respective atom. Explain the choice.	(6 marks)
(d)	Explain the low electron affinity of Nitrogen (electron affinity ≈ 0).	(3 marks)

Question FOUR

- (a) Write the equilibrium reaction and expression for the solubility product for $Ca_3(PO_4)_2$. (2 marks)
- (b) With initial concentrations of $[H_2]_0 = 0.86$ M, $[N_2]_0 = 0.65$ M and $[NH_3]_0 = 0.45$ M, and value of $K_c = 9.6$ at 375 °C, the synthesis of ammonia is given by the reaction;

 $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$

(i) Calculate the reaction quotient Q_c , and determine the direction of the reaction.

(5 marks)

(4 marks)

- (ii) Explain the changes in the concentration of the reactants and product.
- (c) For the reaction

 $\begin{array}{rcl}H_2O_2 &+ & Fe^{2+} &\longrightarrow & Fe^{3+} &+ & H_2O\\ (i) & Write the oxidation and reduction half reactions & (2 marks)\end{array}$

(ii) Balance the reaction in acidic medium, showing all steps in balancing. (7 marks)

Question FIVE

- (a) Calculate the pH of a buffer solution made from 35.0 g of CH₃COOH and 25.6 g of CH₃COONa in 1.0 l of solution. Given K_a = 1.8 x 10⁻⁵. (6 marks)
 (b) Calculate the quantity of CaCO₃ in grams that will dissolve in 1,000 ml of 0.10 M Ca(NO₃)₂; given K_{sp} = 8.7 x 10⁻⁹. [Atomic masses: N = 14, C = 12, O = 16, Ca = 40] (8 marks)
- (c) For the galvanic cell Cd(s) $\left| Cd^{2+}(1.0 M Cd(NO_3)_2) \right| \left| Pb^{2+}(1.0 M Pb(NO_3)_2) \right| Pb(s)$
 - (i) Write the half-reactions and overall balanced equation for the cell. (3 marks)
 - (ii) Determine the standard cell emf, given $\varepsilon_{Cd^{2+}/Cd}^{o} = -0.40 V$ and $\varepsilon_{Pb^{2+}/Pb}^{o} = -0.13 V$.

(3 marks)