

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (INDUSTRIAL OPTION) BTAC 16S, SEPT 2016 ACH 4208 PHYSICAL CHEMISTRY II

SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER 2018 TIME: 2 HOURS

<u>Instructions to Candidates</u>

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

This paper consists of FIVE questions. Attempt Question one compulsory and any other two question

Do not write on the question paper.

Paper two

QUESTION ONE

- A. Calculate Enthalpy of formation of benzene from heat of combustion of liquid benzene which is 630.31 per mole. Given enthalpy of formation of C0₂ and H₂O as -393.5and 285.85 kilo joules respectively.
 5 marks
- B. Define
 - i. standard enthalpy of formation (iii) Liquefaction of gases
 - ii. activity of ideal gases
- (iv) heat capacity

8 marks

C. At 20°C the standard EMF of the cell Hg|Hg₂Cl₂(s) | HCl(aq) H2, Pt is 0.2692V and at 30°C it is 0.2660V. Find the values of change in free energy, Enthalpy of reaction and entropy change at 25°C.

6 marks

Reaction is $0.5Hg_2Cl_2(s) + 0.5H_2(g)$ Hg(l) + HCl(aq)

D. Discus liquefaction of gases

5 marks

E. Sketch a well label diagram of water showing all phases at equilibrium

6 marks

QUESTION TWO

- A. 1.22 grams of benzene C₆ H₆ was burnt in constant volume colorimeter. Consequently the temperature of water rose from 15.17°C to 22.84°C. If the quantity of water was 1500grams and heat capacity of bomb colorimeter was 1.75 x 10³ Joules /°C. Calculate Heat of reaction on moler basis given specific heat of water as 4.184J/°C.g
- B. Calculate vapour pressure of water at 298kelvin given enthalpy of vaporization at normal Bp as 410.26j/mol5 marks
- C. Determine Work done At 25 °C for combustion of hydrocarbon at constant pressure if it releases 515.3kj of heat 5 marks
- D. Given partial pressures at 300 kelvin fo the following equilibrium as C $H_4(g)$ as 0.320, $CS_2(g)$ as 0.252, H_2S as 0.125 and $H_2(g)$ as 0.1 Calculate change in free energy and Predict if below equilibrium is spontaneous or non-spontaneous

Reaction
$$CH_4(g) + 2H_2S(g)$$
 $CS_2(g) + 4H_2(g)$ 5 marks

QUESTION THREE

A. Calculate the standard free energy change for the following reaction at 25° c. Given standard enthalpies of formation of $Fe_2O_3(g)$, CO(g), Fe(S) and $CO_2(g)$ as -824.3, -110.5,0 and 393.5 Kilojoules per mole respectively wile Entropies of $Fe_2O_3(g)$, CO(g), Fe(S) and $CO_2(g)$ as 87.4, 197.6, 27.3 and 213.6 joules per kilo mole respectively.

$$Fe_2O_3(g) + CO(g) \longrightarrow Fe(S) + CO_2(g)$$
 7 marks

B. Differentiate between path function and state function

3 marks

- C. Calculate Change in free energy and entropy during adiabatic isothermal compression of one mole of an ideal gas at 300 kelvin from 101.3 KPa to 10.13MPa.4 marks
- D. Calculate the value for ΔH for the $CS_2(l) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$ 6 marks Given:
 - i) $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H_f = -393.5 \text{ kJ/mol}$
 - ii) $S(s) + O_2(g) \rightarrow SO_2(g)$; $\Delta H_f = -296.8 \text{ kJ/mol}$
 - iii) $C(s) + 2 S(s) \rightarrow CS_2(1); \Delta H_f = 87.9 \text{ kJ/mol}$

QUESTION FOUR

A. Given standard enthalpies of formation of NH₄NO₃(s), NH₄⁺ (aq), NO₃⁻ (aq) as -365.56, -132.51 and -205.0 Kilojoules per mole respectively and standard Entropies of NH₄NO₃(s), NH₄⁺ (aq), NO₃⁻ (aq) as 151.08, 113.4 and 146.4 joules per kilo mole respectively Calculate standard free energy change at 25°c for the reaction:

Reaction
$$NH_4NO_3(s) + H_2O(l) \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 6 marks

- B. The critical constant of chlorine are Pc = 45.0 atmospheric and Vc =275.8 L per mol calculate Vander Waals constants a and b
 4 marks
- C. discuss Joule-Thomson effect 4 marks
- D. A and B form ideal solution. At 300 K, the vapour pressure of a solution containing 1 mole of A and 3 moles of B was 550 mmHg. At the same temperature, if one more mole of B is added to this solution, the vapour pressure of the solution increases by 10 mmHg. Determine vapour pressure of A and B in their pure states.
 6 marks

QUESTION FIVE

- A. An aqueous solution containing 28% by mass of a liquid A (moleculer Mass = 140) has a vapour pressure of 160 mm at 37°C. Find the vapour pressure of the pure liquid A. (The vapour pressure of water at 37°C is 150 mm).
 6 marks
- B. Define
 - i. Equilibrium thermodynamics
 - ii. Non-equilibrium

5 marks

C. state zeroth law of thermodynamics

3 marks

D. Sketch phase diagram for a substance X (not specific substance) dissolve in ice using the following data and identify Eutectic and congruent melting points
 6 marks

Composition in mole	20	30	25	35
percent				
Temperature ⁰ C	-20	-10	5	10
Compound			$X.4H_2O$	X 2H ₂ O