

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BTAC 16S

ACH 4201 : COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

- (a) Explain briefly and concisely, the following observations or facts
 - (i) Li chemistry is almost similar to the chemistry of group II members (alkaline earth metals).

			[2mks]
(ii)	Glass made from boron or Al are more superior in quality than those made from Na ₂ O or	r K ₂ O
			[3mks]
(i	ii)	Group III metals are much harder than group I and II	[2mks]
(i	v)	Explain why, alkali metals are stored under liquid hydrocarbons or in a sealed container	[2mks]
((v)	Atomic size of Al is larger than that of Ga	[3mks]
(1	vi)	KO ₂ exist but K ₂ O does not exist	[2mks]
(v	ii)	The only binary compounds of noble gases are fluorides and oxides.	[2mks]
(b) W	Vhat i	s diagonal relationship, using stoichiometric equations state three diagonal relationships	between
L	i and	Mg.	[6 mks]

(c) The table below represents some properties of the hydrides of group 6 elements. Use the information contained in the table and answer question that follow.

Hydride	ΔH of formation	Bond angle	Boiling point °C
H ₂ O	-242	H-O-H, 104°28'	100
H ₂ S	-20	H-S-H, 92°	- 60
H ₂ Se	+81	H-Se-H, 91°	- 42
H ₂ Te	+154	H-Te-H, 89°	- 2.3

Explain the trends in;

i.	Stability of the hydrides.	[2mks]
ii.	Bond angle	[3mks]
iii.	Boiling point	[3mks]

Question TWO

(a) Compare and contrast the formulas and stabilities of the oxidation states of the common nitrogen chlorides and phosphorous chlorides. **[6mks]**

(b) Explain why in; $NH_3 \rightarrow BF_3$, the B —F the distance is 1.38Å, and in Me ₃ N $\rightarrow BF_3$ the distance	B—F	is
1.39Å, which are much longer than the 1.3Å in BF ₃	[3 n	nks]

(c)

(i) State how	(i) State how iron catalyst in Haber process speed up the chemical reaction									
(ii) State two sources for the raw material used in Haber process										
(d) State three econ	omic importance	of NH ₃				[3mks]				
Question THREE										
(a) Suggest reasons	for and against in	nclusion of H in the main gro	up elements			[3mks]				
(b) What is meant b	y 'hydrogen gap'	? How does it a rise				[2mks]				
(c) Write down the g with water (d)	general chemical	equations for the reaction	between hydr	rides of grou	p I and g	group II [2mks]				
(i) Give the other	name for 'inorg	anic benzene				[1mk]				
(ii) How is it diff	Ferent from	benzene				[1mk]				
(e) State three differ and silanes	ences between ca	arbon and silicon which attril	outes to the	differences	between	alkanes [3mks]				
(f) Explain why trim	nethylamine is a l	Lewis base but trisiylamine is	s not .			[3mks]				

(g) Starting with SiCl ₄ , illustrate how silicone of benzene derivative can be prepared.										
Question FOUR										
(a) Using examples explain how the chemistry of sodium is closely related to that of calcium metal	[4marks]									
(b) Explain how one can establish the presence of sodium metal from its ore.	[1mk]									
(c) State and write down the formula for the main ore of sodium metal										
(d) State the main raw materials required for extraction of Na	[1mk]									
(e) Using chemical equations explain the chemical process involved in recovering sodium metal f	rom its ore [7mks]									
(f) State two economic importance of sodium	[1mk]									
(g) Explain how tetraethyl lead $[Pb(C_2H_5)_4]$, which is gasoline additive is prepared? State the attached to its use	challenges [2mks]									
Question FIVE										
 (a) What is meant by the terms contact processes? (b) State two sources of raw materials in contact process (c) State four raw materials required in contact process (d) Using stoichiometric equations only, show how H₂SO₄ acid is obtained from contact process (e) state two chemical hazards associate with contact process 	[1mk] [2mks] [4mks] [4mks] [2mks]									
(f) state 4 economic importance of H_2SO_4	[4mks]									

(f) state 4 economic importance of H₂SO₄(g) State why ammonium phosphate is more superior fertilizer than urea

APPENDIX

[2mks]

1	Periodic Table of the Elements												18				
H Hydrogen 1,003	2				-							13	14	15	16	17	² Helum
3 Li Lithium 6.941	4 Be Berytlum 9.012											5 Boron 10.811	6 Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15,999	9 Fluorine 18.998	10 Ne Neon 20,180
II Na Sodium 22.990	12 Magnesium 24.305	3	3 4 5 6 7 8 9 10 11 12 11 12 12 10 11 12 10 11 12 10 11 10 10 11 1												18 Argan 39.948		
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.967	23 V Vanadius 50.942	24 Cr Chromium 51.996	25 Mn Manganes 54.938	26 Fe Iron 55.845	27 Co Cobalt 58,933	28 Ni Nickel 58.693	29 Cu Coppe 63.54	30 T Zn 2inc 6 65.38	31 Gallum 69.723	32 Germaniu 72.631	33 Ass Arsenic 74.922	34 Selenium 78.971	35 Br Promine 79,904	36 Kr Krypton 84.798
37 Rb Rubidium 84.468	38 Sr Strontium 57.62	39 Yttilum 88.906	40 Zr 2irconium 91.224	41 Nobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetiun 98.907	44 Ru Butheniu 101.07	45 Rh Bhodium 102.905	46 Pd Palladur 106.42	47 Ag Silver 107.56	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.711	5 I Sb Antimony 121.760	52 Te Teluium 127.6	53 Iodine 126.904	54 Xee Xenon 131.294
55 Cesium 132.905	56 Barlum 137.325	57-71 Lanthanides	72 Hf Hafnium 178.49	73 Ta Tantalur 150.945	74 W Tungsten 183.84	75 Re Rhenium 196.207	76 Osmiun 190.23	77 Ir Irdium 192.217	78 Pt Platinum 195.085	79 AL Gold 196.96	80 I Hg Mercury 7 200.592	81 TI Thailum 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.015
87 Fr Francium 223.020	88 Ra Padium 226.025	89-103 Actinides	104 Rf Ratherlandium [261]	105 Dubniun [262]	106 Seaborgium [266]	107 Bh Bohrium [264]	108 Hassiur (269)	109 Metherium [268]	Darmstadt [269]	III Rg Roentger [272]	LI 2 Coperniciu [277]	m Ununtrium unknown	Fleroviur [299]	Ununpentiu	n Livermoriur [298]	Ununseptiu unknown	m Ununoctum unknown
		5: L	7 5 La anthanum 138.905 9 9 Ac	8 Ce Cerlum 140.115	59 6 Pr 140.906 N 91 9 Pa	0 Nd eodymium 144.243 2 U	61 Promethium 144.913 93 Np	62 Sm 150.36 94 Pu	63 Eu Europium 151.964 95 Am	64 Gd Gadolinium 157.25 96 Cm	65 Tb Tetblum 158.925 97 Bk	66 Dy Dysprosium 162.500 98 Cf	67 Ho Holmium 164.930 99 Es	68 Er Erbium 167.259	69 Tm Thulium 168.934	70 Yb Ytterbium 173.055 102 No	71 Lu Lutetum 174.967 103 Lr
			Actinium 227.025	Thorium 232.038	Protectinium 231.036	Uranium 238.029 Basic	Neptuñum 237.048	Plutonium 244.064	Americium 243.061	Curium 247.070	Berkelium 247.070	Californium 251.080	Einsteinium [254]	Fermium 257:095	Vendelevium 255.1	Nobelium 259.101	[262]
	Alkali Merlai Alkaline Earth Transition Merlai Bazinc Merlai Seminierari Nonmerlai Halogen Noble Gas Lanthanide Actinide eolis Teal International																