

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

(A Centre of Excellence)

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 11M)

ACH 2210: CHEMICAL THERMODYNAMICS AND PHASE EQUILIBRIA

SPECIAL/SUPPLEMENTARY: EXAMINATIONS

SERIES: February 2013

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper - Answer booklet This paper consists of *FIVE* questions.

Question ONE

c)

d)

- a) Briefly discuss each of the following:
 - i) Universe in thermodynmamics
 - ii) Indicator diagram
 - iii) Equation of state
 - iv) Calorimetry
 - v) Isolated system

b) A certain gas expands in volume form 2.0litres to 6.0 litres at constant temperature. Calculate the work done by the gas if it expands:

i)	Against a vacuum	(2marks)					
ii)	Against a constant pressure of 1.2atm	(3marks)					
The	following is an example of an equation of state						
Р	= f(T, V,n)						
i)	i) Describe the meaning of the equation (2marks)						
ii) Give the meaning of each term (4marks)							
The	equation below shows the reaction between ammonia and fluorine.						
NH_3	$+3F_2 = 3HF + NF_3$						
(g)	(g) (g) (g)						
Use	the standard molar enthalpy change of formation (ΔH°_{f}) data in the table	below to calculate					

the molar enthalpy change for this reaction.

	10	•	
Compound			ΔH° _f (KJ/Mol)
NH_3			-46
HE			-269
NF ₃			-114

(5marks)

(2marks)

(2marks)

(10marks)

e) If a system does 75.45 of work on its surroundings and simultaneously there is 25.7J of heat transfer from the surroundings determine the change in internal energy for the system? (4marks)

Question TWO

a) Enthalpy, it is defined as:

H = U + PV

- i) Describe the meaning of each term in this equation for enthalpy (3marks)
- ii) Discuss why enthalpy is treated as a state function.
- iii) By taking infinitesimal increments to H,U,P and V, show that $\Delta H = 2P$ (8marks)
- b) i) State Hess's law of heat summation
 - ii) The standard reaction enthalpy for the hydrogenation of propene $CH_2 = CHCH_3 + H_2 \longrightarrow CH_3CH_2CH_3$ (g) (g) (g) Is -124KJ/Mol. The standard reaction enthalpy for the combustion of propane, $CH_3CH_2CH_3 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ (g) (g) (g) (l) is -2220KJ/mol. Calculate the standard enthalpy of combustion of propene given $CH_2 = CHCH_3 + 9/2O_2 \longrightarrow 2CO_2 + 3H_2O$

(g) (g) (g) (l)
and
$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
 is -285.8KJ/mol (5marks)

Question THREE

a)	By 1	the use of a suitable model, show that isothermal reversible expansi	on work is given as:		
	W	= -nRT In <u>V_f</u>			
		Vi	(11marks)		
b) i) Differentiate between entropy and free energy					
	ii)	The change in free energy is given as $\Delta G = \Delta H - T\Delta S$			
	Des	(5marks)			

Question FOUR

a)	Distingu	ish b	etwee	n:									
	i) R	lever	sibilit	y and ir	reversib	ility in	therm	odyna	mics				(4marks)
	ii) Is	ocho	ric pr	ocess ar	d isoba	ric proc	cess						(4marks)
	iii) Spontaneous and non-spontaneous process.									(4marks)			
b)	The stand	lard ϵ	entrop	y value	s for sor	ne com	pound	s is giv	ven b	elow:			
	Compour	nd	-	Enth	ropy va	lue (J/	/K)	-					
	CaO			39.8		-	-						
	CO_2			213.0)								
	CaCO ₃			92.9									
	NH ₃			193.0)								
	N_2			192.0)								
	H_2			131.0)								
	Using this	s data	a, dete	ermine t	he stand	lard en	thropy	chang	es foi	the rea	actions	at 25°C	
	i) C	CaCO	3 —		- CaO	$+ CO_2$							
		(s)			(s)	(g)							(4marks)
	ii) N	$_{2} + 3$	$H_2 -$		► 2NH	3							
	(g	g)	(g)		(g)								

Question FIVE

- a) Discuss briefly each of the following:(3marks)i) Entropy(3marks)ii) Free energy(3marks)iii) Microstates(3marks)iv) Distribution(3marks)
- b) Discuss qualitatively the sign of the entropy change expected for each of the following processes.

i)	$2H_2 + O_2 (g) (g)$	→2H ₂ O (1)	(2marks)
ii)	NH₄Cl —	→NH ₃ + HCl	

