

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

DES 17S, DEHS 17S & DFQA 17S

ACH 2101: FUNDAMENTALS OF CHEMISTRY

END OF SEMESTER EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2HOURS

DATE: Pick Date Sep 2018

Instructions to Candidates

You should have the following for this examination Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Ouestion ONE

(i) Empirical formula(1 mar(ii) Molecular formular(1 mar(iii) Molar volume(1 mar(iv) Oxidising agent(1 mar(v) Reducing agent(1 mar
(iii) Molar volume(1 mar(iv) Oxidising agent(1 mar
(iv) Oxidising agent (1 mar
· · · · · · · · · · · · · · · · · · ·
(v) Reducing agent (1 mark
(b) Using a well labeled diagram outline the structure of an atom (5 mark
(c) Write the chemical formula of the following compounds
(i) Potassium dichromate (1 mark
(ii) Silver chromate (1 mark
(iii) Magnessium bicarbonate (1 mark
(iv) Potassium permanganate (1 mark
(d) Discuss the principles and rule governing the distribution of electrons in an orbital (5 marks
(e) Explain the relationship between the atomic size and the ionisation energy 4 marks
(f) State any four precautions that should be taken against corrosive liquids (4 Marks
(g) The ionization value IE ₁ of magnesium is 737 kJmol ⁻¹ higher than that of its counterpart
Sodium 496 kJ mol ⁻¹ explain (3 marks

Ouestion TWO

(a) Define the term oxidation number(b) Determine the oxidation number of the following

(i) Chlorine in ClO₃⁻
(ii) Vanadium in VO₄³⁻
(iii) Chromium in K₂Cr₂O₇
(iv) Mn in KMnO₄
(v) Sulphur in H₂SO₃
(c) Differentiate between chemical changes and physical changes
(3 marks)
(3 marks)

Question THREE

- (a) 1.32g of magnesium were dissolved in dilute hydrochloric acid and the solution was the heated in a stream of hydrogen chloride. 5.26g of anhydrous magnesium chloride remained. Find the simplest formula for magnesium chloride. (Mg=24, Cl=35.5) (5 mark)
- (b) Define isotope and give three ways in which they are used in the medical field (6 mark)
- (c) Using spd notation write the electronic configuration of the elements having the following atomic numbers

(i) 9 (ii) 17 (iii) 19 (iv) 4 (1 mark) (1 mark) (1 mark)

Question FOUR

(a) 4.90g of pure sulphuric acid was dissolved in water the resulting total volume was 250cm^3 20.7cm^3 of thus solution was found on titration, to completely neutralize 10.0cm^3 of sodium hydroxide solution. (S = 32, O = 16, H = 1)

(i) Write the equation for the titration reaction.
 (2 marks)
 (ii) Calculate the molarity of the sulphuric acid solution.
 (2 marks)
 (iii) Calculate the moles of sodium hydroxide neutralized.
 (2 marks)
 (iv) Calculate the molarity of sodium hydroxide.
 (2 marks)
 (2 marks)

(b) a buffer solution containing 0.10 mol dm^{-3} of ethanoic acid and 0.20 mol dm^{-3} of sodium ethanoate calculate its pH given K_a for ethanoic acid is $1.74 \times 10^{-5} \text{ mol dm}^{-3}$ (7 marks)

Question FIVE

(a) Nitrogen gas combine with hydrogen gas to form ammonia. Explain how changes in temperature, pressure and concentration affect equilibrium constant (9 marks)

 $N_2(g) + 3H_2(g) = 2NH_3(g) \Delta H - 1024KJmol^{-1}$

(b) Determine the pH of 0.15 M ammonia (NH₃) with a Kb= 1.8×10^{-5} (6 marks)