

### TECHNICAL UNIVERSITY OF MOMBASA

### FACULTY OF APPLIED AND HEALTH SCIENCES

### DEPARTMENT OF PURE & APPLIED SCIENCES

### **UNIVERSITY EXAMINATION FOR:**

## BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY

# BACHELOR OF SCIENCE IN MOLECULAR BIOLOGY & FORENSIC TECHNOLOGY

ABT 4211: CARBOHYDRATE METABOLISM

### SPECIAL/SUPPLEMENTARY EXAMINATION

**SERIES: SEPTEMBER 2018** 

TIME:2HOURS

**DATE:**Pick DateSep2018

#### **Instructions to Candidates**

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.** 

#### **Question ONE**

| a)                 | Illustrate the irreversible reactions of glycolysis                                                                                                     | 4                                         |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| b)                 | State the catalytic role of the following; (i) Phosphofructokinase (ii) Ribulose 5-phosphate isomerase                                                  | (6marks)<br>(1mark)<br>(1mark)            |  |
| c)<br>d)           | Identify reactions in which the following molecules take part (i) Uridine diphosphate glucose (ii) $\alpha$ -ketoglutarate Outline galactose metabolism | (1mark)<br>(1mark)<br>(5marks)            |  |
| e)<br>© <i>Teo</i> | State the implication of aldolase B deficiency in a human being.  chnical University of Mombasa                                                         | (3marks) <i>Page <b>1</b> of <b>2</b></i> |  |

f) Illustrate pyruvate decarboxylation reactions. (4marks) g) Differentiate between; Gluconeogenesis and glycogenolysis (2marks) (i) (ii) Enthalpy and entropy (2marks) Calculate the standard free-energy change for the following metabolically important enzyme-catalyzed h) reaction at 25 °C and pH 7.0. (4 marks) R = 8.315 J/mol. KK'eq = -0.0475Triose phosphate isomerase glyceraldehyde 3-phosphate Dihydroxyacetone phosphate **Question TWO** With the aid of relevant illustrations, describe the tricarboxylic acid (TCA) cycle. (a) (10marks) (b) Describe the mitochondrial components of the electron transport chain (ETC). (10marks) **Question THREE** Discuss a) The light independent reactions of photosynthesis in higher plants. (10marks) b) The breakdown of glycogen in the liver cells. (10marks) **Question FOUR** (a) Describe the Hexose monophosphate pathway (10marks) (b) Discuss the process of glycogenesis in the liver cells. (10marks) **Question FIVE** The equilibrium constants of two coupled enzymatic reactions at 25°C are as follows; a) Glucose 6-phosphate +  $H_2O \rightarrow Glucose + P_i$ K'eq = 270ATP + Glucose → ADP +Glucose 6-phosphate K'eq = 890Gas constant, R = 8.318 J/mol.K Calculate the standard free energy of hydrolysis of ATP. (12 marks) Discuss the stages of glycolysis that lead to conversion of glucose to glyceraldehyde 3-phosphate. b) (8 marks)