

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN FOOD TECHNOLOGY AND QUALITY ASSURANCE

ABT 4202: BIOCHEMISTRY II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME:2 HOURS

DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination *Answer Booklet, examination pass and student ID*

This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question ONE

a) Differentiate between these terms

	i.	Catabolism and anabolism	(2 marks)
	ii.	Saturated fatty acids and Unsaturated fatty acids	(2 marks)
b)	Name	two sources and two fates of Acetyl COA	(4 marks)
c)	Explai	in the regulation of glycogen synthase	(6 marks)
d)	Outlin	e the clinical significance of carnitine deficiency	(6 marks)
e)	Outlin	e the Cori cycle	(6 marks)

f) Outline the functions of TCA cycle	(4 marks)		
QUESTION TWO			
a) Describe the by-pass reactions in gluconeogenesis	(12 marks)		
) Summarize how the following metabolites enter the gluconeogenesis pathway			
i. Amino acids	(4 marks)		
ii. Glycerol	(4 marks)		
QUESTION THREE			
Describe; a) The regulation of nucleotide biosynthesis through feedback inhibition b) The biosynthesis of purine nucleotides through salvage pathways	(11 marks) (9 marks)		
QUESTION FOUR			
With the aid of relevant illustrations, describe the fates of pyruvate			
QUESTION FIVE			
Describe;			
a) The oxidative phosphorylation	(10 marks)		
The following diseases associated with mutations of the mitochondrial genes			
i. Leber's hereditary optic neuropathy (LHON)	(5 marks)		
ii. Myoclonic epilepsy end ragged-red fiber (MERRF)	(5 marks)		