Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES
DIPLOMA IN ANALYTICAL CHEMISTRY
(DAC 12S)

ACH 2103: INTRODUCTION TO PHYSICAL CHEMISTRY

SPECIAL/SUPPLEMENTARY: EXAMINATIONS
SERIES: February 2013
TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper

- Answer booklet

This paper consists of $\boldsymbol{F I V E}$ questions.
Answer Question ONE (compulsory) and any other TWO questions
This paper consists of 4 PRINTED pages

Question ONE

(i) Briefly discuss each of the following
a) Real gas
b) Mole fraction
c) Solution
d) Solubility product
e) Buffer solution

(2marks each, total 10 marks)

(ii) From first principles, show that
a) $\mathrm{PV}=\mathrm{nRT}$
b) $\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}}_{1}=\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}}_{2}$

T_{1}	$\mathrm{~T}_{2}$

(iii) a) State Daltons Law of partial pressures
b) Halomethane ($\mathrm{F}_{3} \mathrm{C}-\mathrm{CHBrCl}$) is a commonly used surgical anaesthetic delivered by inhalation. What is the partial pressure of each gas if 15.0 grams halomethane gas is mixed with 22.6 g oxygen gas and the total pressure is 862 mmHg ? (Molar mass of halomethane is 197.4 glmol and oxygen $=32 \mathrm{~g} / \mathrm{mol}$).
c) The reaction between nitrogen monoxide, NO and oxygen gas, O_{2}, to form NO_{2} is environmentally important. The reaction is
$2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$
(g) (g) (g)

Suppose that the two reactant gases are kept in separate containers as shown below:

Then suppose that the valve is opened and the reaction proceeds to completion at a constant temperature of $25^{\circ} \mathrm{C}$
i) What gas remain at the end of the reaction
(2marks)
ii) What are their partial pressures, and what is the total pressure in the system?
(3marks)

Question TWO

a) i) Explain why gases at low temperature and high pressure do not obey the ideal gas equation
(2marks)
ii) The van der Waals equation can be written as follows

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

Explain the meaning of each term.
(3marks)
 calculated using the van der Waals equation? $\mathrm{A}=2.25 \mathrm{l}^{2} . \mathrm{atm} / \mathrm{mol}^{2}$ and $\mathrm{b}=0.04281 / \mathrm{mol}$.
(5marks)
b) A sample of nitrogyl bromide (NOBr) is heated to $100^{\circ} \mathrm{C}$ in a 1.0 litre container to decompose it partially according to the equation:
$2 \mathrm{NOBr} \rightleftharpoons 2 \mathrm{NO}+\mathrm{Br}_{2}$
(g)
(g) $\quad(\mathrm{g})$

The container is found to contain 6.44 g NOBr, 3.15 g NO and $8.38 \mathrm{~g} \mathrm{Br}_{2}$ at equilibrium
($\mathrm{N}=14,0=16$ and $\mathrm{Br}=80$)
i) Find the value of K_{C} at $100^{\circ} \mathrm{C}$
ii) Find the total pressure exerted by the mixture of gases
iii) Express Kp for this reaction at $100^{\circ} \mathrm{C}$.

Question THREE

a) Write the equailibrium constant expression KC for
i) $\mathrm{CO}+3 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$
(g)
(g)
(g)
(g)
(3marks)
ii) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}+3 \mathrm{H}_{2}$
(g) (l)
(g) $\quad(\mathrm{g})$
(3marks)
iii) $\quad 1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$
(g) $\quad(\mathrm{g})$
(g)
(4marks)
b) (i) Ethylene glycol (EG) is a common automobile antifreeze. It is water soluble and fairly non - volatile ($197^{\circ} \mathrm{C}$ boiling point). Calculate the freezing point depression of a solution containing 651 g of ethylene glycol in 2505 g of water. (Molar mass of ethylene glycol $=$ 62.07 glmol) (Kf of ethylene glycol $=1.86^{\circ} \mathrm{C} / \mathrm{m}$)
(6marks)
(ii) The average osmotic pressure of sea - water is about 30.0 atm at $25^{\circ} \mathrm{C}$. Calculate the molar concentration of an aqueous solution of sucrose that is isotonic with sea water.
(4marks)

Question FOUR

a) Oxygen gas is generated in the decomposition of potassium chlorate and collected over water at $20^{\circ} \mathrm{C}$. The volume of the gas collected at atmospheric pressure of 755 mmHg is 370 ml . Calculate the mass of oxygen gas obtained. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mmHg at $20^{\circ} \mathrm{C} .(\mathrm{O}=16)$
$2 \mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+3 \mathrm{O}_{2}$
(s)
(s) $\quad(\mathrm{g})$
(8marks)
b) A mixtures of gases whose composition is as follows: 0.3 moles A, 0.25 moles to and 0.3 moles C have a total pressure of 2 atm . Calculate the partial pressure of the gases.
(4marks)
c) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ burns in air as given by the following equation:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2}$
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(1)
(g)
(g)
(1)
i) Balance the equation (2marks)
ii) Determine the volume of air in litres at 30 C and 800 mmHg required to burn 230 g of ethanol. Assume air to be $21.0 \% \mathrm{O} 2$ by volume. $(\mathrm{C}=12, \mathrm{H}=1$ and $\mathrm{O}=16)$

Question FIVE

a) Distinguish between
(i) Real gas and ideal gas
(4marks)
(ii) Diffusion and effusion
(4marks)
b) Part of the contact process for the manufacture of sulphuric acid involves the reversible reaction:

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} \rightleftharpoons \Delta \mathrm{H}=-198 \mathrm{KJ} / \mathrm{mol}
$$

(g) $\quad(\mathrm{g})$
(g)
i) State Le-Chatelier's principle
(2marks)
ii) For the above equilibrium, state and explain the effect on the equilibrium position of
a. Increasing the pressure at constant temperature
b. Increasing the temperature, at constant pressure.
iii) Write an expression for the equilibrium constant, K_{c}, for the above equilibrium (2marks)
iv) State and explain the effect on Kc of
a) increasing the pressure, at constant temperature.
(2marks)
b) increasing the temperature, at constant pressure.

