

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

MASTERS OF SCIENCE IN CHEMISTRY

ACH 5108: ADVANCED SPECTROSCOPIC TECHNIQUES

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 3 HOURS

DATE:Pick DateSep 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **SIX**Question(s). Attemptany FOUR questions. **Do not write on the question paper.**

Question ONE

(a) What is peak resolution as applied in ¹H -NMR Spectroscopy? State four main factors which affect peak resolution in NMR spectroscopy. [5 marks]

(b) An organic molecule which has the molecular formula $C_{11}H_{12}O_3$ registered IR absorption signals associated with a carbonyl group and Aromatic ring. The ¹H-NMR and ¹³C-NMR spectra of the molecule are given below:

- Compute the double bond equivalence (DBE) of the molecule. [2 marks] i.
- ii. State chemical shifts of the carbon atoms from ¹³C- NMR spectrum of the compound and describe the structural information which can be deduced from the listed chemical shift values (Make use of the [6 marks] provided charts).

©Technical University of Mombasa

iii. Draw the structure of the molecule and, label the structure with ¹ H chemical shifts and multiplicity of the protons in the same magnetic environment. [10 marks]	
iv. What feature(s) of the spectra helped in the determination	on of the stereochemistry of the molecule? [2 marks]
Question TWO	
(a) Outline the theory of Electron spin resonance spectrometry.	[6 marks]
(b) Give detailed account on instrumentation of electron spin rea	sonanace spectrometry. [6 marks]
(c) Discuss the two relaxation methods in Electron spin resonan	ce spectrometry. [8 marks]
(d) Outline the applications of Electron spin resonance spectron	netry in in nutraceutical and food research. [5 marks]
Question THREE	
(a) Outline the role of various components of an NMR spectrom	neter. [7 marks]
(b) Describe proton decoupled and off resonance decoupled tec	hniques used in ¹³ C NMR. [6 marks]
(d) Explain why	
 i. In ¹³C NMR protonless carbon exhibits low intensity. ii. CDCl₃ exhibits a triplet at δ 76, 77and 78 in its ¹³C NM. 	[3 marks]R spectrum.[2 marks]
(e) Give an account of deuterium isotope substitution effects app	plied in ¹³ C NMR. [7 marks]

Question FOUR

molecules? 2 marks]
3 marks]
experiment to 7 marks]
8 marks]
5 marks]
t example and 8 marks]
nd detection in 7 marks]
[10
n to a great 8 marks]
Atomic 6 marks]
cence 4 marks]

(d) Use a schematic diagram to outline the instrumentation in HG-AFS. [7 marks]