TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF PURE \& APPLIED SCIENCES
UNIVERSITY EXAMINATION FOR:
BACHELOR TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND
BIOTECHNOLOGY
AAB 4302: BIOSTATISTICS \& EXPERIMENTAL DESIGNS REGULAR PAPER SPECIAL/SUPPLEMENTARY EXAMINATIONSERIES: SEPTEMBER 2018
TIME:2HOURS
DATE:Pick DateSep2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) A set of 100 pods, each containing 4 peas, was examined to see how many of the peas were good. The following were the results.

No. of good peas in pod	0	1	2	3	4
No. of pods (f)	7	20	35	30	8

Find the (i) Mean
(ii) Median
(iii) Mode
(iv) Comment on the distribution of the frequency
(b) The number of organic particles suspended in a volume $\mathrm{V} \mathrm{cm}^{3}$ of a certain liquid follows a poisson distribution with mean 0.1 V .

Find the probability that a sample of $\mathrm{V}=1 \mathrm{~cm}^{3}$ of the liquid will contain
(i) at least one organic particle
(ii) exactly one organic particle
(c) The number of times Y an adult human breathes per minute is approximately normal with mean equal to 16 and standard deviation equal to 4 . If a person is selected at random and the number of Y breathes per minute while at rest is recorded, what is the probability that Y will
(i) exceed 22
(ii) between 12 and 24
(iii) almost 21
(d) Twenty randomly selected maize farms yielded a mean of 15 bags per acre. Assuming that the yield per acre is normally distributed with a variance of 150 , construct a 95% confidence interval estimate for the true mean yield per acre.

Question TWO

(a) In a fishing competition, the total catches of 40 anglers has masses (kg) as given below
Mass (kg) $\quad 0.3-0.7 \quad 0.8-1.2 \quad 1.3-1.7 \quad 1.8-2.2 \quad 2.3-2.7$
$\begin{array}{lllllll}\text { Frequency } & 8 & 12 & 8 & 8 & 4\end{array}$
(i) Draw a histogram of these data.
(ii) Obtain the mean and median. Which will you consider to be more appropriate and why.
(iii) Calculate the standard deviation of the distribution
(b) In order to determine whether or not a particular heat treatment is effective in reducing the number of bacteria in skim milk. Observation were made before and after treatment on twelve samples of skim milk. Te results are recorded below in logarithms of direct microscopic counts.

Sample	Before Treatment	After Treatment
1	6.98	6.95
2	7.08	6.94
3	8.34	7.17
4	5.30	5.15
5	6.26	6.28
6	6.77	6.81
7	7.03	6.59
8	5.56	5.34
9	5.97	5.98
10	6.64	6.51
11	7.03	6.84
12	7.69	6.99

(i) State the null and alternative hypothesis.
(ii) Test the hypothesis in (i). Use $\alpha=0.05$.
(iii) Distinguish between situation requiring a two-sample t-test and a paired sample t-test.

Question THREE

(a) In order to taste two tooth pastes, a sample of 4 pairs of brothers from 4 different families were picked from a large number of potential families. One brother used crest. The other brother used colgate. The decay level was measured by a dentist after a year. Result were:

	Family 1	Family 2	Family 3	Family 4
Crest	1.3	1.0	1.2	0.9
Colgate	0.8	1.0	0.7	0.7

Test at $\alpha=0.05$ the claim by colgate that their decay level was lower
(i) Compute the test statistics
(4 marks)
(ii) Give the degree of freedom
(iii) Do you reject Ho or fail to reject Ho, and give conclusion.
(b) A student titres 10 ml of 0.1 M acid against 0.1 M alkali five times and obtains the following results for the volume of alkali: $9.88,10.18,10.23,10.39,10.25 \mathrm{ml}$.

Question FOUR

(a) Some varieties of nematodes, round worms that live in the soil feed upon the roots of lawn grass and other plants. This pest, which is particularly troublesome in warm climates, can be treated by the application of nematodes. Data collected on the pecent kil of nematodes for various rates of application (pounds per acre) are as follows:

Rate of application, x	2	2	2	3	3	3	4	4	4	5	5	5
Percent kill, y	50	56	48	63	69	71	86	82	76	94	99	97

(i) Calculate the coefficient of correlation, r between rates of application (x) and percent kill (y). ($\mathbf{6}$ marks)
(ii) Do the data provide evidence to indicate a linear correlation between y on x. $(\alpha=0.05)$
(iii) Fit a simple linear regression for the data.
(iv) Give a 95% confidence interval for β. (Do not calculate the C.I)
(b) Briefly explain the importance of randomization and replication in design of experiments.

Question FIVE

(a) A clinical trial was carried out to investigate whether there is any evidence of a difference in the effects of melatonin drug and the placebo. 10 patients were observed for one night with the drug and one night with the placebo. The hours of sleep on each are shown in the table below

Patient	Hours of Sleep	
	Drug	Placebo
1	5.2	5.9
2	7.0	7.9
3	8.2	3.9
4	6.6	4.7
5	5.5	5.3
6	7.4	5.4
7	5.3	5.5
8	6.7	6.1
9	7.4	3.8
10	5.8	6.3

(i) Write down the null and alternative hypothesis for this trial.
(ii) Use an appropriate test statistic to test the hypothesis in (a). (Use $\alpha=0.05$)
(iii) What assumptions have you made in carrying out this test?
(iv) What conclusions do you draw from these data.
(b) A company wishes to examine whether there is an association between accident proneness and colour blindness. The results for a group of 80 drivers are as given below

	Colour blindness		
Accidents during last five years		NO	YES
	None	22	5
	One or more	38	15

Is there any evidence of an association between colour blindness and accident proneness? (Use $\alpha=0.05$)

 u
i．
G

 のお称

18 ¢¢ 28	S676LL	6Iですく	8590% OL	\％LZEL9	101
て16で\＆L	092I 69	99t9 ${ }^{\text {S }}$ 9	ItSL＇ 19	£961 65	． 06
8LLでか9	¢I6E09	てESILL	$00 t s$ ¢ $¢$	OZLIIS	08
06てE＇S¢	E6ELIS	9LSL＇8b	8ltist	てくしで¢	$0 L$
685が9	6 LBI ¢ ${ }^{\text {c }}$	LI8tiot	$8+80$ LE	$9 \downarrow$ ¢ $¢ ¢$	09
$9889^{\circ} \mathrm{LE}$	で9L＇9	－LS¢ て¢	L90L＇6z	L066 LZ	0 S
SOS0＇62	£60S＇9\％	1 ¢¢がって	Et91 $て$ \％	S90LOZ	0 t
Z66S 0 \％	976 ± 81	806L＇91	SES6\％ 1	L98LEI	0ε
LL9L＇61	£80LLI	ILtO＇91	Sosでか1	IIZI ¢1	62
26E681	6 LZ691	6 LOE SI	8 t 95 ¢ ${ }^{\text {c }}$	£19tてI	82
8 81181	£ISI＇91	£ $¢ L S$＇t	$98 \angle 8$ てI	9208 II	L2
$616 て ゙ L I$	IGLESI	6 ¢t8 \mathcal{I}	1861て1	E091＇II	92
カELt＇91	が19．ti	L6II $\varepsilon 1$	0t S＇$^{\text {II }}$	L6ISOI	sz
L859＇S1	58t8 \＆	［10tで	t98801	£ 29886	tz
6Lt8＇tl	¢060 $¢ 1$	S889 ${ }^{\text {II }}$	L9S6101	20092＇6	£
SIto ti	08 ¢¢ てI	£28601	$6+$ ¢ちS 6	てLで99	て̌
96をでを1	£16S＇II	£628\％ 01	0ZL688	99 EEO 8	12
9てtがてl	805801	£8065\％ 6	0 0978	$98 \varepsilon \varepsilon t \sim L$	02
6059 ${ }^{\text {¢ }}$	OLIIOI	¢¢9068	£LZE9＇L	86をtsi＇9	6 I
$6 \mathrm{t98} 8^{\circ} \mathrm{I}$	950686	sloez 8	$16 \mathrm{t} 10^{\circ} \mathrm{L}$	18t92＇9	81
258000	9LIL9 8	81t9S＇L	9Llot 9	\dagger ¢L69 S	LI
£ટて1\＆゙6	59196L	$99 L 069$	IzZI8¢	ャてZち｜＇S	91
SL9tS 8	${ }^{56092} \mathrm{~L}$	がでで9	¢¢6zて＇s	D6009＇t	¢I
ES68L＇L	£90LS 9	てL8z9 ¢	Et099 \downarrow	$89+\angle 0^{\prime} \downarrow$	ti
OSItOL	98168 S	t $\angle 800$ ¢	1690 I＇t	£OS95 \％	$\varepsilon ⿺$
088089 9	E092TS	6LE0t＇t	9S0LSE	て8ELO＇${ }^{\text {c }}$	ZI
6LLLS＇S	I8tLS ${ }^{\text {t }}$	SLSI8 \mathcal{E}	LDES0 \＆	เて๕09て	II
$81598{ }^{\circ} \mathrm{t}$ ．	$0 ¢ 0 \downarrow 6$ ¢	L69力でと	IZ85s＇z	S8SSİて	01
91891 ＇t	IIsてを旡	6E00Lて	てI6L80て	9 96tEL I	6
7S68t \mathcal{L}	ゆ9てELて	£L6Lİて	28t9t9 1	6 ¢ttを 1	8
1 ¢¢8\％	S¢L9I＇て	L86891	Eか06Eで1	S92686	1
£1切で	$6 £ ¢ ¢ 9$ I	LセELEZI	S80ZL8	LZLSL9	9
IEOI9＇1	9LtStII	IIでE8	00EtSs＇	0tLIIか	ς
£ $29 \varepsilon 90^{\circ} 1$	IZLOIL	61tt8t	01IL6 ${ }^{\circ}$	066902	\dagger
SLEtB ${ }^{\text {c }}$	$9 \mathrm{t815¢}$	S6LSIZ	てE8tII	てIZLILO	ε
OZLOIZ	L8szol＇	9SE90S0＇	LOOLOZ0	Iszoolo	τ
$806 L S 10$	lcror00	1286000	ILS 1000	とoru000	1
${ }^{0060}{ }_{z} \chi$	${ }^{0560} \chi$ 亿	${ }_{5160}{ }_{2} \chi$	${ }^{0660}{ }_{7} \chi$	${ }_{5660}{ }_{z} \chi$	J＇p

8 － 8 d	CNODNTNTNNT	Nち	亏
	A A A A A AAAA 	$\rightarrow A A A \perp A \perp A A A$ 	Aunuuaさす。
	$\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega$ ${\underset{\sim}{u}}_{\sim}^{\omega}$	$\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega$ 	AAAMunaoъ
$\left\lvert\, \begin{gathered} N \\ \hline 8 \\ \hline \end{gathered}\right.$	NNNNNNW $\omega \boldsymbol{H} \omega$ 운웅 우엉ㅇㅇ	$\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega \omega$ 	$\omega \omega$ н A Aいのが
	NNNNNNNNN 	NNNNW $\omega \omega \omega \omega \omega$ 	${ }_{\infty}^{\infty}$ む
	NNNNNNNNN 	NNNNNNNWw ปฟ $\ddagger \infty \infty$	
${ }^{N} N \mathbb{N}$	NNNNNNNNNN	nNNNNNNNW \＆isidy	
NNN	NNNNNNNNN 	nnnnnnnne． 	
GNNN	nnNnNNNNN 	出为	$\omega \omega \omega \omega$ －
$\left.\right\|_{\infty}-\frac{N}{8}$	nNNNNNNNN 	annunnanne 	No
-i Fion	nnNNNNNNN －oboNNNNNHWN	nnununnuna 	Now wh w

