

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY

BIMBT 12 S

SCH 2103: ORGANIC CHEMISTRY

SPECIAL/SUPPLEMENTARY EXAMINATION

JULY 2013 SERIES	2 HOURS
Instructions to candidates:	

This paper consist of **FIVE** questions
Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

- a) (i) Give FOUR properties of carbon which enable carbon to form large number of compounds. (4marks)
 - (ii) Explain what is meant by the term functional group and give the structure of the functional group in each of the following compounds.
 - I. Alkene
 - II. Aldehyde (3 ½ marks)
- b) (i) Differentiate between ionic bonds and covalent bonds. Use appropriate example. (4marks)
 - (ii) Label each bond in the following compounds as ionic or covalent
 - F_2
 - II. LiBr

		III.	C_2H_2	
				(1 ½ mark)
	(iii)	Draw	a Lewis structure for each compound.	(3marks)
		I.	Ethylene, C ₂ H ₄	
		II.	Acetylene, C ₂ H ₂	
		III.	Chlorate ion, ClO ₃ -	
c)	(i)	Defin	e formal charge	(1mark)
	(ii)		late the charge on each atom in the following species and ve indicated on each species	verify the totals
		I.	NH_4	
		II.	H_3O	
				(3marks)
	(iii)	Distinguish between positional isomerism and functional group isomerism. suitable example. (4marks		
d) (i)		State	TWO physical properties of alkanes	(2marks)
(ii) Define:			e:	
		(i)	Hybridization	
		(ii)	Electronegativity	(2marks)
	(iii)	Deter	mine whether each of the following molecules is polar (i.e h	as a net dipole).
(2marks)			rks)	
		I.	CO_2	
		II.	BF ₃	
Quest	ion TW	VO.		
a)	(i)	Caffeine, a stimulant found in coffee, tea, chocolate, and some medications, contains 49.48% carbon, 5.15% hydrogen, 28.87% nitrogen, and 16.49% oxygen by mass and has a molar mass of 194.2. Determine the molecular formula of caffeine $[C=12, 0=16, N=14, H=11]$ (4marks)		

(ii) Give TWO major sources of alkanes (2marks)

Explain briefly the meaning of each of the following terms:

I. Cracking

II. Reforming

(3marks)

b) (i) Give the IUPAC names for each of the following compounds. (4marks)

$$\begin{array}{cccc} & C1 & CH_3 \\ & & & \\ I. & CH_3 - CH_2 - CH_2 - CH - C - CH_3 \\ & & & \\ & & & \\ & & & \\ CH_3 & & \\ \end{array}$$

$$\begin{array}{ccc} \text{IV.} & & CH_3CH_2-C-H \\ & & & \\ & & O \end{array}$$

(ii)Complete the following reaction equations by writing down the structure of the major product formed in each case. (4marks)

I.
$$CH_3CH_2CH = CH_2$$
 H_2/Pd Δ

But-1-ene

II.
$$CH_3 - C = CH_2$$
 HBr CH₃ Non Peroxide

III.

c) (i) Give the mechanism of acid catalysed dehydration of alcohols to alkenes according to the reaction shown below. (2marks)

$$CH_3$$
 $H \longrightarrow C \longrightarrow CH_3$
 CH_3
 CH_3
 CH_3

(ii) Give ONE industrial application of alcohols. (1mark)

Question THREE

a) (i) Write down the IUPAC names for the following compounds, respectively.

(4marks)

I. CH₃-CH-CH₂-CH-CH₂-CH₃

CH₃ CH₂CH₃

II. CH₃-CH₂-CH-CH₃

Br

III.

- b) (i) Explain the observation that the boiling points of aldehydes are lower than those of alcohols and carboxylic acids of comparable molecular weights. (1mark)
 - (ii) State Markovnikov's Rule (1mark)
- c) Give the structure of the major product formed from each of the following reactions

(5marks)

(i)
$$CH_3$$
 HCI HCI

(ii)
$$\frac{\text{HNO}_3/\text{H}_2\text{SO}_4}{\text{HNO}_3/\text{H}_2\text{SO}_4}$$

(iii)
$$\bigcup_{C}^{O}_{H}$$
 H_2/pt

(iv)
$$\begin{array}{c|c} O \\ C \\ OH \end{array}$$
 1. LiAlH₄, diethyl ether $\begin{array}{c|c} O \\ \hline 2. & H_2O \end{array}$

(v)
$$CH_3CH_2MgBr + H_2C - CH_3$$
 1. diethyl ether $2.H_3O+$

- d) (i) Distinguish between S_N1 and S_N2 reaction mechanisms. (2marks)
 - (ii) State THREE factors that influence $S_N 2$ and $S_N 1$ reactions. (3marks)
 - (iii) Name the FOUR alcohols represented by the molecular formula C₄H₉OH and write down their structural formulae. (4marks)

Question FOUR

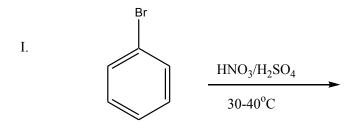
- a) (i) A white powder is analyzed and found to contain 43.64% phosphorus and 56.36% oxygen by mass. The compound has a molar mass of 283.88g. What are the compound's empirical and molecular formulas? (P=30.97, 0=16) (4marks)
 - (ii) Preliminary investigation performed on a certain compound (A) suspected to be organic reveals that it is a new compound. Briefly explain the procedure or sequence of steps that would have to be followed in order to determine the structure of the new compound A. (6marks)
- b) (i) Classify each pair of compounds as constitutional isomers or stereoisumers.

 (3marks)

III.
$$CH_3CHCH_2CH_2CH_3$$
 and $CH_3CH_2CHCH_2CH_3$ CH_3 CH_3

- (ii) Explain precisely how any ONE of the following carbon hybrid orbitals are formed and give one example of each case. Use illustrations. (4marks)
 - I) SP² hybrid orbitals
 - II) SP hybrid orditals
 - III) Draw resonance structures for benzene (2marks)
 - IV) State ONE commercial use for benzene (1mark)

Question FIVE


a) (i) Give the IUPAC name for each of the following compounds (5marks)

I.
$$CH_3CHCH_2CH_2COOH$$
 II. CH_3CH — CHCOOH CH_3

III.
$$\frac{\text{HNO}_3/\text{H}_2\text{SO}_4}{30\text{-}40^{\circ}\text{C}}$$

IV.
$$O_2N \xrightarrow{\mathsf{CH}_3} \mathsf{NO}$$

- V. CICH₂CH₂CH₂CH₃
- (ii) Write down the structural formula of the major product formed from each of the reaction given below (5marks)

III.
$$CH_3COOH + Cl_2$$
 P

OR

PCl₃

IV.
$$CH_3$$
— CH — $COOH$ $2NH_3$

V. CH_3CH_2OH $K_2Cr_2O_7,H+$

b) (i) Write down the structural formula for each of the following compounds

(3marks)

- I. Phenol
- II. 1,2,3-propanetriol
- III. 3-chlono-2-methylpentane.
- (ii) Give the missing reagent(s) and condition where appropriate needed to carry out the following transformations (3marks)

$$CH_4C \xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm}} CCH_2CH_3 \xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm}} CH_3C \xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm}} OH \xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm} \hspace*{-0.5cm}} HO \xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm}} CHCH_2CH_3$$

- c) Describe briefly a simple chemical test you would perform to distinguish between the following pairs of compounds (4marks)
 - I. Propene and propane
 - II. CH₃CH₂OH and CH₃CHCH₃ OH