TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
Diploma in Marine Engineering (Y3S1)
EMR 2305 : Thermo-Fluids II (Paper 2)
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Examination Pass \mathcal{E} Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) The pressure P, developed in a jet pump is found to depend on the jet diameter d, diffuser diameter D, the velocity u of the jet, the volume flow Q and the density and viscosity of the fluid. Using dimensional analysis, prove that the functional relationship between the variables can be given by:

$$
\frac{P}{\rho u^{2}}=f\left[\frac{Q}{u d^{2}}, \frac{\mu}{\rho u D}, \frac{d}{D}\right]
$$

b) Oil flows over a submerged body horizontally at a velocity $15 \mathrm{~m} / \mathrm{s}$. The property values for oil are: kinematic viscosity $=3.45 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, density $=833 \mathrm{~kg} / \mathrm{m}^{3}$. An enlarged model is used with 8:1 scale in a water towing tank. Determine:
i. The velocity of the model to achieve dynamic similarity.
ii. If drag force on the model is 3.5 N , predict the drag force on the prototype.

Take: Kinematic viscosity of water $=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

Question TWO

a) With reference to viscous flow through a circular pipe, prove that the velocity distribution u can be given by:

$$
u=-\frac{1}{4 \mu} \frac{\partial p}{\partial x}\left[R^{2}-r^{2}\right]
$$

Where: R is the radius of the pipe and the other symbols retain their usual meaning.
(12 marks)
b) A fluid of viscosity 10 poise and specific gravity 0.90 is flowing through a circular pipe of diameter 110 mm . the velocity at the center of the pipe is $2 \mathrm{~m} / \mathrm{s}$. Determine:
i. Pressure gradient
ii. The shear stress at the pipe wall
iii. The Reynolds number (Re) of the flow
iv. The velocity at a distance of 30 mm from the wall.
(8 marks)

Question THREE

a) Prove that the Manometric head $H_{\text {mano }}$ of a centrifugal pump can be given by:

$$
H_{\text {mano }}=H_{e}+h_{f}
$$

Where: H_{e} is the effective head and h_{f} is head loss in the system.
(8 marks)
b) The inlet and outlet diameters of a centrifugal impeller are 0.2 m and 0.4 m respectively. The vane angle at outlet is 45°. The pump speed is 1000 rpm . The flow velocity is constant at $3 \mathrm{~m} / \mathrm{s}$. The entry of the water is at radial direction. Determine:
i. The vane angle at inlet,
ii. The work done for 1 kg ,
iii. The absolute velocity at outlet and its direction a_{2}
(12 marks)

Question FOUR

a) With reference to internal combustion engines, briefly explain the following terms:
i. Brake power,
ii. Indicated power,
iii. Brake specific fuel consumption,
iv. Indicated mean effective pressure,
v. Mechanical efficiency.
vi. Brake thermal efficiency
b) A four stroke engine has single cylinder with bore of 18 cm and stroke of 34 cm . The Engine has an indicated mean effective pressure of 555 kPa at 390 rpm . At this the brake load is 510 N at a brake radius of 56.5 cm .

Cooling water is flowing at a rate of $270 \mathrm{~kg} / \mathrm{hr}$ with its inlet and exit temperatures being $18^{\circ} \mathrm{C}$ and $58^{\circ} \mathrm{C}$ respectively. The fuel has a calorific value of $43000 \mathrm{~kJ} / \mathrm{kg}$ and is supplied at $3.6 \mathrm{~kg} / \mathrm{hr}$. The exhaust gases carry away 38% of fuel energy. Determine:
i. Mechanical efficiency
ii. Brake thermal efficiency and
iii. Also prepare a heat balance sheet on per second basis.
(14 marks)

Question FIVE

a) Prove that for a two-stage reciprocating air compressor, the intermediate pressure $P^{\prime}{ }_{2}$ for minimum work done assuming perfect intercooling will be given by:

$$
P_{2}^{\prime}=\sqrt{P_{1} P_{2}}
$$

Where: p_{1} and p_{2} are the suction and delivery pressure respectively.
b) A two-stage reciprocating air compressor delivers 4.2 kg of free air per min at 1.01325 bar and $15^{\circ} \mathrm{C}$. The suction conditions are $0.95 \mathrm{bar}, 22^{\circ} \mathrm{C}$. The compressor delivers air at 13 bar. Compression occurs throughout following $P V^{1.25}=C$. There is optimum and perfect intercooling between the two stages and Mechanical efficiency is 0.75 . Neglecting clearance volume determine:
i. The heat transfer in intercooler per second.
ii. The capacity of electric motor.
iii. The \% saving in work if two stage intercooling is compared with single stage compressor between same limits.
(10 marks)

