TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Electrical \& Electronics Engineering UNIVERSITY EXAMINATION FOR:
 Diploma in Electrical Engineering (Y2S1)
 EME 2230 : Mechanical Technology (Paper 2)
 SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: SEPTEMBER 2018
 TIME: 2 HOURS
 DATE: Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Examination Pass E Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) With the aid of a sketch, illustrate the following types of riveted joints.
i. Single riveted lap joint
ii. Single riveted double strap butt joint
b) Define the following terms as used in riveted joints.
i. Pitch
ii. Back pitch
iii. Marginal pitch
c) A double riveted lap joint is made between 15 mm thick plates. The rivet diameter and pitch are 25 mm and 75 mm respectively. If the ultimate stresses are 400 MPa in tension, 320 MPa in shear and 640 MPa in crushing, find the minimum force per pitch which will rupture the joint. If the above joint is subjected to a load such that the factor of safety is 4 , find out the actual stresses developed in the plates and the rivets.
d) With the aid of a well labelled sketch, show the parts of a rivet.

Question TWO

a) Define the following terms as used in gear transmission:
(5 marks)
i. Pitch circle
ii. Pitch Point
iii. Pressure angle
iv. Addendum
v. Circular pitch
b) Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1 . The teeth are of involute form; module $=6 \mathrm{~mm}$, addendum = one module, pressure angle $=20^{\circ}$. The pinion rotates at 90 rpm . Determine:
i. The number of teeth on the pinion to avoid interference on it and the corresponding number of teeth on the wheel,
ii. The length of path and arc of contact,
iii. The number of pairs of teeth in contact,
iv. The maximum velocity of sliding.
c) List five advantages of using gears in power transmission

Question THREE

a) List five advantages of a chain drive over a belt drive.
b) A chain drive is used for reduction of speed from 240 rpm to 120 rpm . The number of teeth on the driving sprocket is 20 . If the pitch circle diameter of the driven sprocket is 600 mm and centre to centre distance between the two sprockets is 800 mm , determine:
i. The number of teeth on the driven sprocket.
ii. The pitch
iii. Length of the chain.
c) Define the following terms as used in chain drives:
i. Pitch of the chain
ii. Pitch circle diameter
iii. Factor of safety
d) List four engineering applications of chains

Question FOUR

a) List five factors that influence the selection of a belt drive.
b) Show that for maximum power transmission:

$$
T=3 T_{\mathrm{c}}
$$

Where: T is the maximum tension to which the belt can be subjected.
T_{c} is the centrifugal tension.
c) Two pulleys, 450 mm and 200 mm diameter are fixed on parallel shafts 1.95 m apart and are connected by a crossed belt. Find:
i. the length of the belt required,
ii. the angle of contact between them.
d) From the Q. 4 (c), If power is transmitted when the larger pulley rotates at 200 $\mathrm{rev} / \mathrm{min}$, and the maximum permissible tension in the belt is 1 kN , and the coefficient of friction $\mu=0.25$, Find the power transmitted.

Question FIVE

a) Show that for a Carnot cycle, thermal efficiency is given by:

$$
\eta_{\text {thermal }}=1-\frac{T_{2}}{T_{1}}
$$

Where: T_{2} is the lower temperature and T_{1} is the higher temperature.
b) 0.5 kg of air (ideal gas) executes a Carnot power cycle having a thermal efficiency of 50%. The heat transfer to the air during the isothermal expansion is 40 kJ . At the beginning of the isothermal expansion the pressure is 7 bar and the volume is 0.12 m^{3}. Determine:
i. The maximum and minimum temperatures for the cycle in K .
ii. The volume at the end of isothermal expansion in m^{3}.
iii. The heat transfer for each of the four processes in kJ .
(For air $c_{\mathrm{v}}=0.721 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and $c_{\mathrm{p}}=1.008 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$).
c) With the aid of a graphical representation explain the processes of a Rankine cycle.

