

#### TECHNICAL UNIVERSITY OF MOMBASA

# Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY EXAMINATION FOR: Diploma in Marine Engineering (Y2S1) EMR 2207 : Thermo-Fluids I (Paper 2) SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: SEPTEMBER 2018 TIME: 2 HOURS DATE: Sep 2018

#### **Instruction to Candidates:**

You should have the following for this examination

- Examination Pass & Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FIVE** questions. Attempt any **THREE** questions.

Maximum marks for each part of a question are as shown.

### Do not write on the question paper.

#### **Question ONE**

- a) Derive an expression for the total pressure force on a surface immersed in liquid.
- b) Find the net hydrostatic force per unit width on rectangular panel AB in **Fig. Q1** and determine its line of action.



Fig. Q1

(20 marks)

## **Question TWO**

- a) A liquid of specific gravity 1.3 flows in a pipe at a rate of 800 L/s, from point 1 to point 2 which is 1 m above point 1. The diameters at section 1 and 2 are 0.6 m and 0.3 m respectively. If the pressure at section 1 is 10 bar, determine the pressure at section 2.
- b) A tank contains oil of specific gravity 0.8 to a depth of 2.8m.It discharges through a 20mm diameter straight pipe at a point 8m below the bottom of the tank. Calculate
  - i. The discharge in litres per second.
  - ii. Oil pressure at a pint halfway along the pipe.

### (20 marks)

## **Question THREE**

- a) The working fluid, in a steady flow process flows at a rate of 220 kg/min. The fluid rejects 100 kJ/s passing through the system. The conditions of the fluid at inlet and outlet are given as:  $c_1 = 320 \text{ m/s}$ ,  $P_1 = 6.0 \text{ bar}$ ,  $U_1 = 2000 \text{ kJ/kg}$ ,  $V_1 = 0.36 \text{ m}^3/\text{kg}$  and  $c_2 = 140 \text{ m/s}$ ,  $P_2 = 1.2 \text{ bar}$ ,  $U_2 = 1400 \text{ kJ/kg}$ ,  $V_2 = 1.3 \text{ m}^3/\text{kg}$ . The suffix 1 indicates the condition at inlet and 2 indicates at outlet of the system. The change in potential energy may be neglected. Determine the power capacity of the system in MW.
- b) A cylinder contains 0.45 m<sup>3</sup> of a gas at  $1 \times 10^5$  N/m<sup>2</sup> and 80 °C. The gas is compressed to a volume of 0.13 m<sup>3</sup>, the final pressure being  $5 \times 10^5$  N/m<sup>2</sup>. Taking  $\gamma = 1.4$ , R = 294.2 J/kg·°C, determine
  - i. The mass of gas.
  - ii. The value of index 'n' for compression.
  - iii. The increase in internal energy of the gas.
  - iv. The heat received or rejected by the gas during compression.

#### (20 marks)

### **Question FOUR**

- a) A fluid at a pressure of 3 bar, and with specific volume of 0.18 m<sup>3</sup>/kg, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law,  $p = c/v^2$  where *c* is a constant. Calculate the work done by the fluid on the piston.
- b) An air tank is equipped with a pressure relief valve so that the pressure does not exceed 220 kN/m<sup>2</sup> gauge. The initial temperature and pressure are 23 °C and 200 kN/m<sup>2</sup>. The temperature is then increased to 83 °C. If the mass of air is 0.11 kg, determine
  - i. The mass of air that will escape.
  - ii. The pressure in the tank when temperature returns to 23 °C.

#### (20 marks)

## Question FIVE

- a) The following equation gives the internal energy of a certain substance u = 3.64 pv + 90, where u is in kJ/kg, p is in kPa and v is in m<sup>3</sup>/kg. A system composed of 3.5 kg of this substance expands from an initial pressure of 500 kPa and a volume of 0.25 m<sup>3</sup> to a final pressure 100 kPa in a process in which pressure and volume are related by  $pv^{1.25}$  = constant.
  - i. If the expansion is reversible, find Q,  $\Delta U$  and W for the process.
  - ii. In another process, the same system expands according to the same pressurevolume relationship as in part (*i*), and from the same initial state to the same final state as in part (*i*), but the heat transfer in this case is 32 kJ. Find the work transfer for this process.
  - iii. Explain the difference in work transfer in parts (*i*) and (*ii*).
- b) The properties of a system, during a reversible constant pressure non-flow process at P = 1.6 bar, changed from  $V_1 = 0.3 \text{ m}^3/\text{kg}$ ,  $T_1 = 20 \text{ °C}$  to  $V_2 = 0.55 \text{ m}^3/\text{kg}$ ,  $T_2 = 260 \text{ °C}$ . The specific heat of the fluid is given by  $C_p = (1.5 + 75/T + 45) \text{ kJ/Kg} \cdot \text{°C}$  where *T* is in °C. Determine
  - i. Heat added/kg.
  - ii. Work done/kg.
  - iii. Change in internal energy/kg.
  - iv. Change in enthalpy/kg.

(20 Marks)