TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering
 UNIVERSITY EXAMINATION FOR:
 Diploma in Marine Engineering (Y2S1)
 EMR 2207 : Thermo-Fluids I (Paper 2)
 SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: SEPTEMBER 2018
 TIME: 2 HOURS
 DATE: Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Examination Pass E Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) Derive an expression for the total pressure force on a surface immersed in liquid.
b) Find the net hydrostatic force per unit width on rectangular panel AB in Fig. Q1 and determine its line of action.

Fig. Q1

Question TWO

a) A liquid of specific gravity 1.3 flows in a pipe at a rate of $800 \mathrm{~L} / \mathrm{s}$, from point 1 to point 2 which is 1 m above point 1 . The diameters at section 1 and 2 are 0.6 m and 0.3 m respectively. If the pressure at section 1 is 10 bar, determine the pressure at section 2.
b) A tank contains oil of specific gravity 0.8 to a depth of 2.8 m . It discharges through a 20 mm diameter straight pipe at a point 8 m below the bottom of the tank. Calculate
i. The discharge in litres per second.
ii. Oil pressure at a pint halfway along the pipe.
(20 marks)

Question THREE

a) The working fluid, in a steady flow process flows at a rate of $220 \mathrm{~kg} / \mathrm{min}$. The fluid rejects $100 \mathrm{~kJ} / \mathrm{s}$ passing through the system. The conditions of the fluid at inlet and outlet are given as: $c_{1}=320 \mathrm{~m} / \mathrm{s}, P_{1}=6.0 \mathrm{bar}, U_{1}=2000 \mathrm{~kJ} / \mathrm{kg}, V_{1}=0.36 \mathrm{~m}^{3} / \mathrm{kg}$ and c_{2} $=140 \mathrm{~m} / \mathrm{s}, P_{2}=1.2 \mathrm{bar}, U_{2}=1400 \mathrm{~kJ} / \mathrm{kg}, V_{2}=1.3 \mathrm{~m}^{3} / \mathrm{kg}$. The suffix 1 indicates the condition at inlet and 2 indicates at outlet of the system. The change in potential energy may be neglected. Determine the power capacity of the system in MW.
b) A cylinder contains $0.45 \mathrm{~m}^{3}$ of a gas at $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and $80^{\circ} \mathrm{C}$. The gas is compressed to a volume of $0.13 \mathrm{~m}^{3}$, the final pressure being $5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Taking $\gamma=$ $1.4, R=294.2 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, determine
i. The mass of gas.
ii. The value of index ' n ' for compression.
iii. The increase in internal energy of the gas.
iv. The heat received or rejected by the gas during compression.
(20 marks)

Question FOUR

a) A fluid at a pressure of 3 bar, and with specific volume of $0.18 \mathrm{~m}^{3} / \mathrm{kg}$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $p=c / v^{2}$ where c is a constant. Calculate the work done by the fluid on the piston.
b) An air tank is equipped with a pressure relief valve so that the pressure does not exceed $220 \mathrm{kN} / \mathrm{m}^{2}$ gauge. The initial temperature and pressure are $23^{\circ} \mathrm{C}$ and 200 $\mathrm{kN} / \mathrm{m}^{2}$. The temperature is then increased to $83^{\circ} \mathrm{C}$. If the mass of air is 0.11 kg , determine
i. The mass of air that will escape.
ii. The pressure in the tank when temperature returns to $23^{\circ} \mathrm{C}$.
(20 marks)

Question FIVE

a) The following equation gives the internal energy of a certain substance $u=3.64 \mathrm{pv}+$ 90 , where u is in $\mathrm{kJ} / \mathrm{kg}, p$ is in kPa and v is in $\mathrm{m}^{3} / \mathrm{kg}$. A system composed of 3.5 kg of this substance expands from an initial pressure of 500 kPa and a volume of $0.25 \mathrm{~m}^{3}$ to a final pressure 100 kPa in a process in which pressure and volume are related by $p v^{1.25}=$ constant.
i. If the expansion is reversible, find $Q, \Delta U$ and W for the process.
ii. In another process, the same system expands according to the same pressurevolume relationship as in part (i), and from the same initial state to the same final state as in part (i), but the heat transfer in this case is 32 kJ . Find the work transfer for this process.
iii. Explain the difference in work transfer in parts (i) and (ii).
b) The properties of a system, during a reversible constant pressure non-flow process at $P=1.6$ bar, changed from $V_{1}=0.3 \mathrm{~m}^{3} / \mathrm{kg}, T_{1}=20^{\circ} \mathrm{C}$ to $V_{2}=0.55 \mathrm{~m}^{3} / \mathrm{kg}, T_{2}=260^{\circ} \mathrm{C}$. The specific heat of the fluid is given by $C_{p}=(1.5+75 / T+45) \mathrm{kJ} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}$ where T is in ${ }^{\circ} \mathrm{C}$. Determine
i. Heat added $/ \mathrm{kg}$.
ii. Work done/kg.
iii. Change in internal energy $/ \mathrm{kg}$.
iv. Change in enthalpy/kg.

