

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING \& CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR: DIPLOMA IN BUILDING AND CIVIL ENGINEERING ECV2304: HYDRAULICS SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.
-Scientific calculator
This paper consists of five questions.
Attempt any THREE questions.
Do not write on the question paper.

QUESTION ONE

a) Differentiate the following types of flow;
I. Laminar and turbulent flow
II. Uniform and non-uniform flow
III. Steady and unsteady flow
b) A circular pipe, 2 m diameter is laid at an inclination of 5° to the horizontal. The depth of water in the pipe is 0.75 m and chezy's C is 65 SI units. Calculate the discharge through the pipe.
c) A rectangular channel is 1.2 m wide and 1 m deep. It has a bed slope of 1:3000. The value of k in Bain's formula is 1.54 . Given that chezy's, $C=\frac{157.6}{1.81+\frac{k}{\sqrt{m}}}$ determine the discharge through the channel.
(6marks)

QUESTION TWO

a) Derive the expression for the dimensions of the best rectangular section (6marks)
b) Design a trapezoidal channel using the following hydraulic particulars

- Side slope---- -60° to the horizontal
- Discharge----4.25 $\mathrm{m}^{3} / \mathrm{s}$
- Bed slope----1:9000
- Chezy’s C----49 SI units
(8marks)
c) Explain the importance of the following in open channel design:
i. Maximum velocity
ii. Minimum velocity
iii. Free board

QUESTION THREE

a) Water is flowing through a 3 m wide rectangular channel at a rate of $12 \mathrm{~m}^{3} / \mathrm{s}$. The depth of flow is 2 m . determine ;
I.Specific energy
II.Critical depth
III.Critical velocity
IV.Minimum specific energy
V.Froude's number
VI.Whether the flow is critical ,sub-critical or super-critical
(12marks)
b) With the aid of a sketch explain the procedure of drawing the specific energy diagrams using both the kinetic and potential energy diagrams
(8marks)

QUESTION FOUR

a) With the aid of a sketch explain the working principle of :
i. Centrifugal pump
ii. Pelton wheel
(8marks)
b) A single acting pump has a 300 mm diameter plunger with a stroke of 200 mm . the speed of the pump is 300 rpm and it delivers $6.5 \mathrm{l} / \mathrm{s}$ of water' determine
I.The theoretical discharge
II.Coefficient of discharge
III.Percentage slip of the pump
(6marks)
c) A double acting reciprocating pump has a stroke of 300 mm and a piston of 150 mm diameter. The delivery and suction heads are 26 m and 4 m respectively including friction heads. If the pump is working at 60 rpm , power required to drive the pump with 80% efficiency
(6marks)

Question five

a) With the aid of a sketch illustrate the working principle of a double acting reciprocating pump
(8marks)
b) Explain the main functions of the following accessories in a reciprocating
i. Pump air vessels
ii.Foot valve
iii.Strainer
iv.Delivery valve
c) Differentiate a turbine from a pump

