

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN CIVIL ENGINEERING

EBC 2207 : THEORY OF STRUCTURES II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question ONE

Using Macaulay's method, determine the deflection of the beam at each load point for the loading shown in figure 1. (20marks)

Take I =
$$10.67 \times 10^8 \text{mm}^4$$

$$E = 14 \text{ KN/mn}^2$$

Fig 1

Question Two

Using Macaulay's method, determine in terms of EI, the deflection of points C and D in the beam loaded as shown in fig 2 (20marks)

Question Three

- i) State Mohr's theorems for slope and deflection
- ii) Obtain expressions for the slope and deflection at the free and of a cantilever carrying a uniformly distributed load as shown in figure 3. (20marks)

Question Four

Use of Mohr's theorem to obtain max deflection and slope of a 5.5 beam below fig 4(20marks)

Question Five

Fig.4

Fig 5 shows loaded cantilever beam using Mohr/s theorems, determine the deflection at point 'B'C' and the slope at 'C' in terms of EI. (20marks)

