TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
Diploma in Mechanical Engineering (Y1S1)
EME 2102 : Mechanical Engineering Science I (Paper 2)
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Examination Pass \mathcal{E} Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) Explain the following terms as applied to linear motion, giving units where applicable.
i. Displacement
ii. Acceleration
iii. Vector quantity
iv. Scalar quantity.
b) A car accelerates uniformly from rest at $2 \mathrm{~m} / \mathrm{s}^{2}$ and immediately begins to decelerate to a stop at $3 \mathrm{~m} / \mathrm{s}^{2}$. The total distance covered is 2 km .
i. Find the total time taken.
ii. Find the greatest velocity attained.

Question TWO

a) State the THREE Newton's equations of angular motion.
b) After the power to drive a shaft is shut off, it is seen to describe 200 revolutions in the first 50 seconds and finally comes to rest in a further 30 seconds. If the retardation is uniform, Calculate;
(8 marks)
i. The initial angular velocity in rev/min.
ii. The retardation.
c) Winding drum of mass 100 tonnes has a radius of gyration of 1.5 m . Find, (9 marks)
i. The constant torque required to increase the speed from $40 \mathrm{rev} / \mathrm{min}$ to 90 $\mathrm{rev} / \mathrm{min}$ in 50 seconds if the friction torque is 10 kNm .
ii. If the wheel is rotating freely at $90 \mathrm{rev} / \mathrm{min}$ and brakes are applied bringing it to rest in 100 revolutions, find the brake torque assuming uniform retardation.

Question THREE

a) With regard to projectiles;
i. Define a projectile.
ii. Derive the equation for the range of a projectile in the horizontal axis.
b) A stone is throne with a velocity of $70 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal from the ground. Calculate,
(13 marks)
i. the greatest height reached by the stone
ii. the range
iii. the time of flight
iv. the time the stone is three-quarters the maximum height.

Question FOUR

a) A simple pendulum was observed to perform 40 oscillations in 20 seconds, each of amplitude 7°. Calculate:
(10 marks)
i. the length of the pendulum
ii. velocity and acceleration of the bob at a displacement of 5° from the rest position.
iii. maximum velocity and maximum acceleration and where each occurs.
b) A vertical spring of stiffness $500 \mathrm{~N} / \mathrm{m}$ was set oscillating while carrying a mass of 600 g with an amplitude of 40 mm . Find:
(10 marks)
i. the periodic time.
ii. the velocity and acceleration when at a displacement of 30 mm from the rest position.
iii. the maximum velocity and maximum acceleration and where each occurs.

Question FIVE

The framework in the figure below carries a mass of 4 tonnes at the lower middle joint. Find the forces in all bars and state whether the bars are in tension or compression.
(20 marks)

