

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY EXAMINATION FOR: Diploma in Mechanical Engineering (Y1S1) APS 2150 : Physical Science for Engineers (Paper 2) SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: SEPTEMBER 2018 TIME: 2 HOURS DATE: Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Examination Pass & Student ID Card
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FIVE** questions. Attempt any **THREE** questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question ONE

a) State the two laws of refraction.	(3 marks)			
b) Show that;	(6 marks)			
$an_g = 1/an_g$				
c) State the conditions for total internal reflection.	(3 marks)			
d) With the aid of a ray diagram, explain the effect of refraction to a stick placed in				
water as observed by a person in the air medium.	(5 marks)			
e) A ray of light passing from air and incident to the mediums of glass and w	ater at an			
incident angle of 60° is refracted by 20° and 15° in glass and water respectively.				
Calculate the refractive indices of;	(3 marks)			
i. Water				

ii. Glass

Question TWO

a) Define the following terms:

- Heat capacity i.
- ii. Latent heat of fusion
- iii. Atomic mass unit
- iv. Isotope
- b) List 3 properties which make mercury a better thermometric liquid than alcohol.
- (3 marks) c) In chlorine 75.5% of the atoms have a mass number of 35, and the other 24.5% have a mass number of 37. Calculate the atomic weight of the element. (4 marks)
- d) With the aid of a clear sketch, explain how an astronomical telescope works.
- e) Differentiate between the chemical properties and the physical properties of matter. In each case list two examples of the physical and chemical properties of matter.

Question THREE

a) State,		(3 marks)
i.	The Archimedes principle	
ii.	The law of floatation	
b) Defin	e the following terms:	(3 marks)
i.	Density	
ii.	Relative density	
iii.	Pressure	
c) A rect	angular solid glass of density 2.5 g/cm ³ has dimensions 10 cm x 4	0 cm x 30 cm.
The b	ock rests on a horizontal flat surface. Calculate;	(8 marks)
i)	The relative density of the glass	
ii	ii) The minimum pressure the glass can exert on the horizontal surface	
ii) The maximum pressure the glass can exert on the horizontal	surface
d) Show	that the pressure in a liquid is given by:	(2 marks)

$$P = \rho g h$$

Where: *P* is Pressure in the liquid, ρ is the density of the liquid and *g* is the gravitational force

- e) A liquid has a density $\rho = 1.53 \text{ x}10^3 \text{ kg/m}^3$ and atmospheric pressure of 750 mmHg. For a point 3 m below the free space of the liquid, calculate; (4 marks)
 - i. Gauge pressure
 - ii. Absolute pressure

(4 marks)

(5 marks)

(4 marks)

(3 marks)

Question FOUR

Question FOUR						
a) State the follow	(4 marks)					
i. The Arrl	henius Acid-Base	Theory				
ii. The Lew	vis Acid-Base The	ory				
b) Differentiate be	(2 marks)					
c) Define the follo	(4 marks)					
i. The mol	e					
ii. Molar m	lass					
d) An elemental analysis of a sample of an ionic compound showed 2.82 g of Na, 4.35 g						
of Cl and 7.83 g	g of O. What is th	e empirical formu	la and name of co	ompound formed?		
Given that the	(5 marks)					
e) List 3 unique properties of carbon.				(3 marks)		
f) Differentiate between Oxidizing and reducing agents			(2 marks)			
Question FIVE						
a) Define the following terms as used in the transfer of heat. (3 marks)						
i. Conduction						
ii. Radiation						
iii. Convect	-	• 1• 1	F 1 · 1	1, 1		
	-	time cooling graph	h. Explain how a s			
from the gaseous state to the solid state. (5 marks)						
c) List three prop	erties which make	es mercury a bette	r thermometric lie	quid than alcohol.		
				(3 marks)		
d) Complete the ta	able below:			(4 marks)		
Element	K	0	Al	Fe		
Protons	19		13	26		
			10	20		

e) Calculate the quantity of heat required to melt 4 kg of ice and raise the temperature to 50 °C. Take the specific latent heat of ice to be 3.4 x 10 ⁵ J/kg K. (5 marks)

16

27

Mass Number

39