OF MOMBASA

UNIVERSITY EXAMINATION FOR:

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018

TIME: 2 HOURS
DATE: September 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Attempt Question and any other two Questions.
Do not write on the question paper.

Question ONE (30marks)

a. Show that $X_{n} \xrightarrow{p} 0$ if $\mathrm{E}\left|\mathrm{X}_{\mathrm{n}}\right|^{r} \rightarrow 0$
b. Let $A_{n}=\left\{\omega ; 4-\frac{2}{3 n}<\omega<8-\frac{1}{2 n}\right\}$ determine if the this sequence is monotone increasing or decreasing hence determine the limit (4marks)
c. Let $A=\{a, b, c, d\}$ determine the power set of A (5 marks)
d. Two dice are tossed and their sums noted. Let X denote the sum of the appearing pair of numbers. Determine the probability distribution of X
(5marks)
e. A coin is tossed three times. If X denotes the number of tails and let $Y=\left\{\begin{array}{l}1 \text { if } \mathrm{X} \leq 1 \\ 2 \text { if } \mathrm{X}=2 \\ 3 \text { if } \mathrm{X}=3\end{array}\right.$ determine the σ field induced by Y
f. Define an indicator function
g. Show that all fields contain the universal set U

Question TWO (20marks)

a. Define the following terms
i. Probability
(3marks)
ii. Conditional probability measure
(3marks)
b. A fair coin is tossed four times. Let X denote the number of tails appearing. Determine;
i. The sample space
ii. The distribution function of X
iii. The expectation of X

Question THREE (20marks)

a. State and prove Fatou's theorem
(12 marks)
b. Define the term independence hence show that if A and B are independent then A and B^{c} are also independent

Question FOUR (20marks)

a. Show that convergence in probability implies convergence in distribution (10 marks)
b. Define convergence in the $r^{\text {th }}$ mean hence show that $X_{n} \xrightarrow{r} X$ implies that $\mathrm{E}\left|\mathrm{X}_{\mathrm{n}}\right|^{r} \rightarrow \mathrm{E}|\mathrm{X}|^{r}$

Question FIVE(20marks)

a. Show that if $\mathrm{Q}(\mathrm{t})$ is the characteristic function X, then $\mathrm{Q}(\mathrm{t})$ is continuous
b. State and prove Borel Cantelli lemma

