

OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 4435: MEASURE, INTEGRATION AND PROBABILITY

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018

TIME: 2 HOURS

DATE: September 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of five questions. Attempt Question and any other two Questions. **Do not write on the question paper.**

Question ONE (30marks)

a.	Show that $X_n \xrightarrow{p} 0$ if $E X_n ^r \to 0$	(4marks)	
b.	Let $A_n = \left\{ \omega; 4 - \frac{2}{3n} < \omega < 8 - \frac{1}{2n} \right\}$ determine if the this sequence is monoton	one increasing	
	or decreasing hence determine the limit	(4marks)	
c.	Let $A = \{a, b, c, d\}$ determine the power set of A	(5 marks)	
d.	Two dice are tossed and their sums noted. Let X denote the sum of the appearing pair of		
	numbers. Determine the probability distribution of X	(5marks)	
		$\int 1 \text{ if } X \leq 1$	
e.			
	A coin is tossed three times. If X denotes the number of tails and let $Y = -$	3 if X = 3	
	determine the σ field induced by <i>Y</i>	(5marks)	
f.	Define an indicator function	(3marks)	
g.	Show that all fields contain the universal set U	(4marks)	

Question TWO (20marks)

a.	Define the following terms				
	i.	Probability	(3marks)		
	ii.	Conditional probability measure	(3marks)		
b.	b. A fair coin is tossed four times. Let X denote the number of tails appearing. Determ				
	i.	The sample space	(5 marks)		
	ii.	The distribution function of X	(5marks)		
	iii.	The expectation of X	(4marks)		
Question THREE (20marks)					
a.	State a	and prove Fatou's theorem	(12 marks)		
b.	Define the term independence hence show that if A and B are independent then A and B				
	are als	o independent	(8 marks)		
Question FOUR (20marks)					
a.	Show	that convergence in probability implies convergence in distribution	(10 marks)		
b.	Define	e convergence in the r^{th} mean hence show that			

 $X_n \xrightarrow{r} X$ implies that $E|X_n|^r \to E|X|^r$ (10marks)

Question FIVE(20marks)

a. Show that if Q(t) is the characteristic function *X* ,then Q(t) is continuous (8 marks)b. State and prove Borel Cantelli lemma (12marks)