

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

THE DEGREE OF BACHELOR OF

AMA4408: TOPOLOGY

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018

TIME: 2HOURS

DATE: Pick DateSep2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE (30 MARKS)

a)	Let A be a subset of a topological space (X, τ) on $X = \{a, b, c\}$ Show that the derived set A' of A is		
	empty	(5 marks)	
b)	Let τ be the class of subsets of \mathbb{R} consisting of \mathbb{R} , ϕ empty set and all open infinite interval.	rvals $E_n =$	
	(a, ∞) with a belonging to $a \in \mathbb{R}$. Show that τ is a topology on \mathbb{R}	(6 marks)	
c)	Define the following		
	i) open neighbourhood	(3marks)	
	ii) closed set	(3marks)	
	iii) cluster point	(3marks)	
d)	Let τ be the confinite topology on any set X. Show that		
e)	Define a normal space	(2 marks)	

Question TWO (20 MARKS)

a) Consider the topology on $X = \{a, b, c, d, e\}$	
$\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$	
i) List the closed subsets of X	(4 marks)
ii) Determine the closure of the set	(4 marks)
{a}	
{b}	
{c, e}	
iii) State the sets that are dense in X	(2 marks)
b) State and prove Lindelof's theorem	(10 marks)

Question THREE (20 MARKS)

a) Show that every subspace of a Hausdorff space is also Hausdorff	(8 marks)
b) Show that every subspace of a regular space is regular	(8 marks)
c) When is a topological space first countable space	(2 marks)
d) State what is meant by a regular space	(2 marks)

Question FOUR (20 MARKS)

a)	Defi	ne the following	
	i)	Open set	(3 marks)
	ii)	T ₁ space	(3 marks)
	iii)	Homeomorphic space	(3 marks)
	iv)	Derived set	(3 marks)

a) Let $X = \{a, b, c, d, d, e\}$.

Determine whether or not each of the following classes of subsets of X is a topology on X

(10 marks)

$$T_{1} = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$$
$$T_{2} = \{X, \phi, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$$
$$T_{3} = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}\}$$

©Technical University of Mombasa

Question FIVE (20 MARKS)

b)	Show that a set G is open if and only if it is a neighbourhood of each of its point	(4 marks)
c)	Consider the topology	
	$\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ on X and subset A= $\{a, d, e\}$ on X	
	Determine the relativisation of τ on A.	(6 marks)
d)	Let $f: X \to Y$ be a function from a non empty set X into a topological space (Y, U), let τ	be the class of
	inverses of open subsets of Y:	

$$\tau = \{f^{-1}(G): G \in U\}$$
. Show that τ is a topology on X (8 marks)

e) Define a normal space

(2 marks)